

WIND INTEGRATION STUDY - ISOLATED ISLAND

Technical Study of Voltage Regulation and System Stability

Date: August 18, 2012

System Planning Department

Table of Contents

1.	Exe	cutive	Summary1			
2.	Intr	Introduction4				
3.	Study Parameters5					
	3.1.	Load	Forecast			
	3.2.	PSSE	Modeling – Wind Plants			
	3.3.	New	Generation Sources / Model Additions7			
	3.4.	Pow	er System Planning and Operating Criteria8			
	3.4.	1.	Voltage Criteria8			
	3.4.	2.	Stability Criteria			
	3.5.	Simu	ulated Events9			
	3.6.	Stud	ly Assumptions10			
4.	Тес	hnical	Analysis11			
	4.1.	Volt	age Regulation Results11			
	4.1.	1.	2020 Extreme Light Load11			
	4.1.	2.	2020 Peak Load			
	4.1.	3.	2035 Extreme Light Load14			
	4.1.	4.	2035 Peak Load			
	4.2.	Tran	sient Stability Results16			
	4.2.1.	20	020 Extreme Light Load			
	4.2.	2.	2020 Peak Load			
	4.2.	3.	2035 Extreme Light Load19			
	4.2.	4.	2035 Peak Load			
	4.3	Mul	tiple Loss of Wind Farms22			
	4.3.	1 Los	s of Two 25MW Wind Farms22			
	4.3.	2 Los	s of Two 25MW Wind Farms – Additional System Inertia22			
	4.3.	3 Los	s of Three 25MW Wind Farms – Additional System Inertia			
5.0) Conc	lusior	15			
AP	PEND	IX A -	LOAD FORECAST (2018 – 2067)26			
AP	APPENDIX B - ESTIMATED SYSTEM LOADS FOR STUDY YEARS					
AP	PEND	X C -	DYNAMIC MODEL SHEETS FOR WIND TURBINES MODELED			

APPENDIX D - GRAPHICAL LOAD FLOW RESULTS 2020 EXTREME LIGHT LOAD	54
APPENDIX E - GRAPHICAL LOAD FLOW RESULTS 2020 PEAK LOAD	58
APPENDIX F - GRAPHICAL LOAD FLOW RESULTS 2035 EXTREME LIGHT LOAD	62
APPENDIX G - GRAPHICAL LOAD FLOW RESULTS 2035 PEAK LOAD	66
APPENDIX H - STABILITY RESULTS 2020 EXTREME LIGHT LOAD	70
APPENDIX I - STABILITY RESULTS 2020 PEAK LOAD	92
APPENDIX J - STABILITY RESULTS 2035 EXTREME LIGHT LOAD	114
APPENDIX K - STABILITY RESULTS 2035 PEAK LOAD	137
APPENDIX L – LOSS OF MULTIPLE WIND FARMS	158

1. Executive Summary

This study investigated the technical limitations of wind integration into the Isolated Island grid of Newfoundland and Labrador Hydro for the base years of 2020 and 2035. The focus of technical limitations was both voltage regulation and system stability constraints for extreme light loading and expected peak loading for the base years referenced. These results provided the maximum wind power penetration levels for the study years for both peak and light load conditions.

The 2010 "NLH Island Demand & Energy Requirements 2018 to 2067" was utilized as the basis for both peak and light load models. The extreme light load is based on approximately 26% of NP and NLH rural peak loading while the industrial customers loading was estimated at 78% of forecasted peak to account for loading coincidents.

Distributed wind generating plants were assumed to consist of 9 x 3MW Doubly Fed Induction Generators (DFIG), similar to that of the existing Fermeuse and St. Lawrence wind plants. Twenty (20) wind farms were modeled across the Island with the maximum output of each wind turbine plant at 25MW with VAR capability of +/- 13.5MVARs per plant (1.5MVARs per unit).

For the study years of 2020 and 2035, the following system additions have been added to NLH's current system isolated island model.

2020

- 1. New 230kV line from Bay d'Espoir to Western Avalon Terminal Station.
- 2. New 25MW wind farm added, assumed to be located at Bay Bulls with POI at Goulds 66kV bus.
- 3. Island Pond (36MW hydro Kaplan unit).
- 4. Round Pond (18MW hydro Kaplan unit).
- 5. Portland Creek (2 x 11.5MW hydro Pelton unit).
- 6. New 125MVA transformer added at Oxen Pond Terminal Station.
- 7. New 20MVAR shunt reactor added at Bottom Brook 230kV bus.

2035

- 1. New 170MW CCCT at Holyrood.
- 2. Two (2) 50MW gas turbines at Hardwoods Terminal Station with a Brush generator of 165.9MVA rating for synchronous condenser operation.
- 3. One (1) 50MW gas turbines at Stephenville Terminal Station with a Brush generator of 165.9MVA rating for synchronous condenser operation.

Load flow analysis of the two base case years of 2020 and 2035 indicate that there are no steady state restrictions up to and including 500 MW of wind power generation for the Isolated Island option. 500 MW was the maximum steady state wind generation dispatch analysed due to the fact that NLH generation at extreme light load conditions approaches this value. The practical steady state limit during extreme light load conditions would be limited to 375MW due to other NUG generation dispatch of approximately 125MW.

Transient stability analysis of the two base case years indicate a maximum wind dispatch level of 225 MW and 300 MW for the 2020 and 2035 Extreme Light Load cases respectively. This is based on a sudden load increase of 15 MW causing a frequency decline to 59.6 Hz which was the pre-defined criteria for frequency deviation. There was no restriction up to and including 500 MW of wind generation for peak loading periods of 2020 and 2035. System events on the 230kV system such as three phase and line to ground faults that were cleared within normal operating times did not adversely affect operation of the wind generation due to the advances of the Low Voltage Ride Through (LVRT) capability. Table 1 below summarizes the resulting restrictions as a result of the transient stability analysis.

Table 1
Maximum Wind Generation Dispatch
Stability Analysis Results

	Ext	Extreme Light Load		Peak Load		
Year	Wind Generation Level (MW)	Wind Penetration Level (%)	System Inertia (MW.s)	Wind Generation Level (MW)	Wind Penetration Level (%)	System Inertia (MW.s)
2020	225	36.8	3340	500	28.5	7197
2035	300	43.8	3340	500	24.8	7509

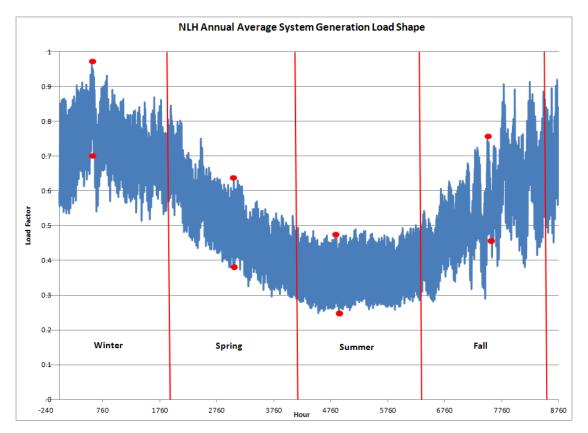
Based on the studies conducted, the transient stability constraint is found to be the limiting factor in determining the amount of wind penetration during the extreme light load conditions. Thus, it is recommended that no more than 225MW and 300MW of net wind generation is dispatched during the extreme light load conditions during the years 2020 and 2035, respectively. However, the extreme light loading conditions are likely to occur for very short durations of the year, particularly during night hours of the summer season, when the wind generation profile is usually at its minimum. Thus, it is anticipated that the available wind generation under light load conditions is in close proximity to the wind penetration level limited by the transient stability constraint. It is recommended that historical wind data be obtained for potential wind sites across the island. This data can then be used to determine time and duration of minimal wind generation profiles coinciding with minimum system loading.

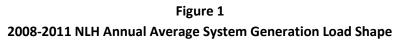
Overall analysis indicates that the current wind generation technology of the Doubly Fed Induction Generator (DFIG) model, similar to the Vestas V90 used in St. Lawrence and Fermeuse, provides voltage support on the island when dispatch is widely distributed (ie. wind farms are geographically dispersed). As well, the control system of the DFIG model aids in frequency response control for the first 5-7 seconds during certain system events, such as loss of generation or sudden load increase. This is accomplished by converting the kinetic energy of the spinning turbine blades into excess power which, in turn allows time for conventional generation governors to respond to system conditions.

The analysis presented in this report does not assume time varying wind patterns and further analysis is recommended to simulate its effect on overall system frequency control. It is believed that high wind penetration levels on the island system could cause larger frequency deviations than currently experienced without additional fast acting counter measures. These could include high inertia

synchronous condensers or high speed flywheel energy storage / regulation plants to minimize frequency deviations as a result of time varying wind patterns.

The analysis also highlights the importance of geographically diversifying wind farms to avoid simultaneous loss of nearby wind farms due to high wind speeds and subsequent system load shedding. In the absence of detailed wind surveys, it is recommended that future wind farm developments should be geographically dispersed to avoid the possibility of this event from occurring. As well, detailed study is recommended to investigate alternate solutions of avoiding under frequency load shedding due to loss of multiple wind farms. Possible solutions may include high speed flywheel energy storage systems and dispatch of fast response generation such as gas turbines during periods of predicted high wind and high wind penetration.


2. Introduction


This study will investigate the technical limitations of wind integration into the Isolated Island grid of Newfoundland and Labrador Hydro for the base years 2020 and 2035. The focus of technical limitations will be both voltage regulation and system stability constraints for extreme light loading and expected peak loading for the base years referenced. These results will provide maximum wind power penetration levels for the study years for both peak and light load conditions.

3. Study Parameters

3.1. Load Forecast

The 2010 "NLH Island Demand & Energy Requirements 2018 to 2067" load forecast was utilized as the basis for both peak and light load models. Appendix A outlines this forecast for NLH Total Requirements which consists of major customers and estimated losses. The NLH Annual Average System Generation Load Shape for the years 2008-2011 is illustrated in Figure 1. This load shape was used to estimate the system extreme light load NLH system generation that can be expected. Appendix B outlines the estimated

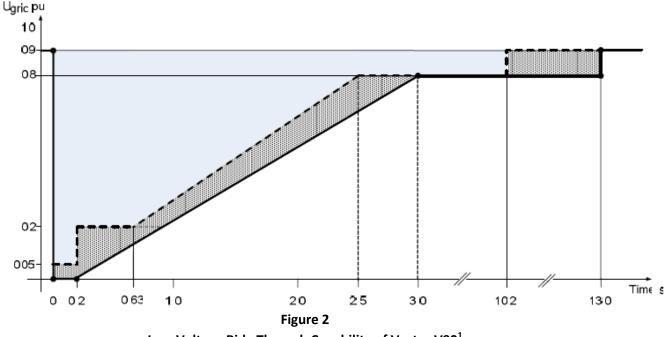
system loadings for the years 2014, 2020, 2030 and 2035. The extreme light load is based on approximately 26% of NP and NLH rural peak loading while the industrial customers loading was estimated at 78% of forecasted peak to account for load coincidence.

3.2.PSS®E Modeling - Wind Plants

PSS®E Version 32.1.1 was used for all analysis.

For study purposes, distributed wind generating plants were assumed to consist of 9 x 3MW Doubly Fed Induction Generators, similar to that of the existing Fermeuse and St. Lawrence wind plants. Twenty (20) wind farms were modeled across the island, as listed in Table 2. It is assumed that the maximum output of each wind turbine plant will be 25MW with VAR capability of +/- 13.5MVARs per plant (1.5MVARs per unit). Individual machines are not modeled in steady state or stability, but combined to act as a coherent group for analysis purposes. In steady state, normal dispatch will have all wind plants operating at unity terminal bus voltage, with VAR limits set at 0.96pf based on MW loading of the units.

N 1 -	Disci	Desien	D //	Point of Interconnection (POI)	
No.	Plant	Region	Bus #	Location	Bus #
1	Doyles WG1	Western	1001	Doyles 66kV	201
2	Doyles WG2	Western	1002	Doyles 66kV	201
3	Stephenville WG1	Western	1003	Stephenville 66kV	204
4	Stephenville WG2	Western	1004	Stephenville 66kV	204
5	Massey Drive WG1	Western	1005	Massey Drive 66kV	115
6	Peter's Barren WG1	GNP	1006	Peter's Barren 66kV	121
7	Bear Cove WG1	GNP	1007	Bear Cove 138kV	134
8	Buchans WG1	Central	1008	Buchans 66kV	151
9	Springdale WG1	Central	1009	Springdale 138kV	113
10	Cobb's Pond WG1	Central	1010	Cobb's Pond 66kV	316
11	St. Lawrence WG1	Burin Peninsula	1011	St. Lawrence 66kV	372
12	St. Lawrence WG2	Burin Peninsula	1012	St. Lawrence 66kV	372
13	Sunnyside WG1	Western Avalon	1013	Sunnyside 138kV	223
14	Sunnyside WG2	Western Avalon	1014	Sunnyside 138kV	223
15	Fermeuse WG1	Eastern Avalon	1015	Goulds 66kV	457
16	Bay Bulls WG1	Eastern Avalon	1016	Goulds 66kV	457
17	Goulds WG1	Eastern Avalon	1017	Goulds 66kV	457
18	Kelligrews WG1	Eastern Avalon	1018	Kelligrews 66kV	348
19	Bay Roberts WG1	Eastern Avalon	1019	Bay Roberts 66kV	309
20	Heart's Content WG1	Eastern Avalon	1020	Heart's Content 66kV	501


Table 2Listing of Distributed Wind Generating Plants Modeled on Island Grid

For dynamic modeling, PSS[®]E Generic Wind model "Type 3" of a doubly fed induction generator was used. This model is comprised of four individual models as follows:

- i) WT3G1 Generator / converter model
- ii) WT3E1 Converter control model
- iii) WT3T1 Wind Turbine Torsional model (two mass)
- iv) WT3P1 Pitch Control model

The dynamic data for these models were obtained from two sources, i) Draft "WECC Wind Power Plant Dynamic Modeling Guide – August 2010" and ii) "Evaluation of the DFIG Wind Turbine Bulit-in Model in PSS/E" prepared by Mohammad Seyedi, University of Technology, Goteborg, Sweden, June 2009. Appendix C contains the data sheets used for this study.

Low Voltage Ride Through (LVRT) capability of DFIG has been modeled in stability using the "VTGDCA" user model which can be viewed in the dynamics data file. This LVRT function has been replicated using the Vestas V90 model, as shown in Figure 2. If voltage at the wind turbine plant's terminal bus goes below the curve for corresponding time interval, then that plant is disconnected from the electrical system model.

Low Voltage Ride Through Capability of Vestas V90¹

Frequency protection has also been modeled in PSS[®]E using the "FRQDCA" user model as outlined in the dynamics data file. The protection settings used in this analysis are as follows:

Over Frequency Setting:61.2 Hz for 0.2 secondsUnder Frequency Setting:56.4 Hz for 0.2 seconds.

3.3.New Generation Sources / Model Additions

For the study years of 2020 and 2035, the following system additions have been added to NLH's existing PSS[®]E system isolated island model.

2020

- 1. New 230kV line from Bay d'Espoir to Western Avalon Terminal Station.
- 2. New 25MW wind farm added, assumed to be located at Bay Bulls with POI at Goulds 66kV bus, Fermeuse 25MW wind farm modeled as connected directly to Goulds 66kV bus as well.
- 3. Island Pond (36MW hydro Kaplan unit) added, modeling data assumed similar to Granite Canal.

¹ Vestas – Documentation of VCRS PSS/E Model rev. 5.5 VCRS-Turbines, Dynamic Simulation for Advanced Grid Option (AGO2), 2006.

- 4. Round Pond (18MW hydro Kaplan unit) added, modeling data assumed similar to Granite Canal.
- 5. Portland Creek (2 x 11.5MW hydro Pelton unit) added, modeling data assumed similar to Cat Arm.
- 6. New 125MVA transformer added at Oxen Pond Terminal Station.
- 7. New 20 MVAR shunt reactor added at Bottom Brook 230kV bus.

2035

- 1. New 170MW CCCT at Holyrood. This is modeled as two units, a steam unit with maximum output of 59MW and a gas turbine with maximum output of 111MW. The steam unit will only have generator modeled in dynamics while the gas turbine will be modeled similar to the existing Hardwoods Gas Turbine.
- 2. The existing Hardwoods Gas Turbine is replaced with two (2) new 50MW gas turbines with modeling similar to existing Hardwoods Gas Turbine with exception of the electrical generators which will be modeled as Brush generators with maximum rating of 165.9MVA each. The gas generator will only be rated for 50MW, but the increased size of the generator will be for synchronous condenser operation.
- 3. The existing Stephenville Gas Turbine is replaced with a new 50MW gas turbine with modeling similar to existing Hardwoods Gas Turbine with exception of the electrical generator which will be modeled as a Brush generator with maximum rating of 165.9MVA. The gas generator will only be rated for 50MW, but the increased size of the generator will be for synchronous condenser operation.

3.4. Power System Planning and Operating Criteria

The following System Planning and Operating Criteria were used as the basis for this study:

3.4.1. Voltage Criteria

Under normal conditions the transmission system is operated such that the voltage is maintained between 95% and 105% of nominal. During contingency events the transmission system voltage is permitted to vary between 90% and 110% of nominal prior to operator intervention. Following an event, operators will take steps (ie. Re-dispatch generation, switch equipment in/out of service, curtail load/production) to return the transmission system voltage to the 95% to 105% normal operating range.

3.4.2. Stability Criteria

Control of frequency on the Island System is the responsibility of NLH's generating stations. Adding nondispatchable generation to the Island may result in fewer of NLH's dispatchable generation resources being on line. As fewer generators are left to control system frequency, frequency excursions become magnified for the same change in load. A theoretical point can be reached where the slightest increase in load will cause the system to become unstable. NLH's criteria with regard to dynamic stability are as follows:

- NLH's generation must be able to return the system frequency to nominal following a sudden increase in load or a sudden decrease in load (load rejection);
- The transmission system must be able to withstand the rejection of 74.3MW of load (existing model used for Voisey Bay Nickel site).
- The system must be able to withstand the sudden step change in load of 15MW such that system frequency does not fall below 59.6 Hz. Given that the first stage of under frequency load shedding scheme incorporates relays settings at 59.5 Hz it is prudent not to encroach upon that level and risk the potential of false under frequency load trips and associated customer interruptions.
- The frequency must not remain above 61.2 Hz for more than 0.2 seconds based upon Vestas wind turbine protection settings.
- The system must be able to survive the loss of the largest on line generator with accompanying load shedding.
- The system must be able to withstand a three phase fault on 230kV transmission system for 6 cycles and subsequent tripping of faulted line. System shall not survive a 3 phase fault at Bay d'Espoir generating station and this contingency shall not be considered as it has also been ruled out as a survivable contingency in the Interconnected Island case with Muskrat Falls.
- The system shall survive an unsuccessful L-G fault on the 230kV system.
- Minimal accepted frequency of 58.0 Hz during system events. Frequencies at this value should trigger under frequency load shedding which shall return system frequency to acceptable levels.
- Minimal accepted frequency of 59.0 Hz for 15 seconds or less. Frequency values beyond this range shall cause load shedding to restore system frequency to acceptable levels.

3.5.Simulated Events

The following contingency events were simulated to observe steady state system performance against above criteria:

- 1. Loss of 230kV line TL233 (Bottom Brook to Buchans)
- 2. Loss of 230kV line TL211 (Bottom Brook to Massey Drive)
- 3. Loss of 230kV line TL228 (Massey Drive to Buchans)
- 4. Loss of 230kV line TL248 (Massey Drive to Deer Lake)
- 5. Loss of 230kV line TL232 (Buchans to Stony Brook)
- 6. Loss of 230kV line TL231 (Stony Brook to Bay d'Espoir)
- 7. Loss of 230kV line TL202 (Bay d'Espoir to Sunnyside)
- 8. Loss of 230kV line TL217 (Western Avalon to Holyrood)
- 9. Loss of Holyrood Unit No. 3 when in synchronous condenser mode

The following system events were simulated to obtain dynamic system responses for various load configurations and wind turbine penetration levels:

- i) Load rejection of 74.3 MW from Voisey Bay Nickel processing facility (load buses 231, 239, 256, 257).
- ii) Survive loss of the largest on line generator .

- iii) Sudden load increase of 15MW at VBN (bus 231).
- iv) Three phase fault for 6 cycles followed by subsequent tripping of 230kV transmission lines at the following locations:
 - Hardwoods Terminal Station (trip TL242)
 - Sunnyside Terminal Station (trip TL202)
 - Bottom Brook Terminal Station (trip TL233)
 - Stony Brook Terminal Station (trip TL231)
- v) Line to ground fault followed by unsuccessful reclose and eventual trip of the following lines:
 - TL242 (fault at Holyrood end)
 - TL202 (fault at Sunnyside end)

3.6.Study Assumptions

The following assumptions were used in the analysis:

- i) Extreme light loading corresponds to worst case scenario and is estimated to be 490MW in 2020 and 557MW in 2035. This corresponds to an estimated NLH Island Generation of 511MW and 581MW respectively. This loading level includes NLH supplied load only and not include customer supplied load such as Kruger or NP.
- ii) Forecasted peak loading is estimated to be 1539MW in 2020 and 1798MW in 2035. This corresponds to an estimated NLH Island Generation of 1587MW and 1853MW respectively.
- iii) Wind generators provide VAR support.
- iv) Wind generation is assumed widely distributed as outlined in Table 1.
- v) Wind dynamic model implementation assumes that the wind speed is constant during the typical dynamic simulation run (10 to 30 seconds) therefore, dynamics associated with changes in wind power are not considered.

4. Technical Analysis

The determination of maximum wind penetration levels to the Isolated Island system of Newfoundland & Labrador was made by analyzing both voltage regulation (steady state) and transient stability of various wind generation dispatch levels. Twenty (20) individual wind turbine plants were modeled, each with a maximum output of 25MW for a maximum total of 500MW, in a distributed fashion throughout the Island grid. Maximum wind generation of 500MW was chosen as it represented approximately 100% of the NLH generation for 2020 Extreme Light Load case. Wind generation dispatch levels were progressively increased by increments of 25MW each for four (4) base cases to determine voltage and stability limitations, these cases were as follows:

- i. 2020 Extreme Light Load Case
- ii. 2020 Peak Load Case
- iii. 2035 Extreme Light Load Case
- iv. 2035 Peak Load Case

4.1.Voltage Regulation Results

Load flows were completed for each base case listed above as well as nine (9) single element contingencies as outlined in Section 3.5 by varying the wind generation dispatch level. The following results are presented for each case and its associated maximum wind generation penetration level.

4.1.1. 2020 Extreme Light Load

Maximum wind penetration of 500MW was achieved in the steady state load flow case with the generation dispatch levels presented in Table 3 below.

Generation Dispatch Levels 2020 Extreme Light Load Base Case					
Generation Source	Generation Dispatch Level (MW)	Percent of Total Generation			
NLH	19.2 ¹	3.1 %			
Kruger	97.1	15.7 %			
Wind	500	81.0 %			
Total	616.3	100 %			

Table 3

Notes

1. BDE Unit 1 on for 19.2MW, BDE7 / CAT2 / HRD3 / HWD GT / SVL GT all in Sync. Cond. Mode

Appendix D graphically shows the results of both the overall system and the 20 wind turbine sites. There are no voltage concerns with distributed generation throughout the island as the wind generation

sources are capable of contributing to voltage support. Table 4 below outlines the results of the nine single element contingency events.

Table 4Single Element Contingency with 500MW Wind Generation2020 Extreme Light Load Base Case

Contingency Event	Description	Results	Mitigation
1	TL233 Outage	Low voltage on west coast,	Wind turbine and SVL G.T.
		greater than 0.90 pu	voltage setpoint adjustment
			solves low voltage concerns
2	TL211 Outage	Low voltage on west coast,	Wind turbine and SVL G.T.
		greater than 0.90 pu	voltage setpoint adjustment
			solves low voltage concerns
3	TL228 Outage	Low voltage on west coast,	Wind turbine and SVL G.T.
		greater than 0.90 pu	voltage setpoint adjustment
			solves low voltage concerns
4	TL248 Outage	Low voltage at BBK, MDR, SVL –	Cat Arm units needed to
		High voltage at DLK > 1.10pu	operate in S.C. mode to
			avoid overvoltage at DLK.
			Wind turbine and SVL G.T.
			voltage setpoint adjustment
			solves low voltage concerns
5	TL232 Outage	No voltage or overload violations	None
6	TL231 Outage	No voltage or overload violations	None
7	TL202 Outage	No voltage or overload violations	None
8	TL217 Outage	No voltage or overload violations	None
9	HRD SC #3 Outage	Extreme low voltages on east	Capacitor banks at HWD and
		coast	OPD to be in-service prior to
			loss of HRD SC#3

Theoretically, 500 MW of wind generation can be placed on the island isolated system from a steady state point of view with no voltage or overloading concerns for the 2020 Extreme Light Load Base case and associated contingencies.

With 500 MW of wind dispatched in the extreme light load case, existing Non Utility Generators (NUGs) have been turned off, this in reality is non dispatchable generation that Newfoundland & Labrador Hydro would utilize before non dispatchable wind generation. Presently, there is approximately 125 MW of NUGs available, excluding the existing 50 MW of wind generation. Therefore the practical steady state limit of non dispatchable wind generation under extreme light loading would be 375 MW.

4.1.2. 2020 Peak Load

Maximum wind penetration of 500MW was achieved in the steady state load flow case with the generation dispatch levels presented in Table 5 below.

Table 5Generation Dispatch Levels2020 Peak Load Base Case

Generation Source	Generation Dispatch Level (MW)	Percent of Total Generation
NLH ¹	1127.9	64.9 %
Kruger	109.1	6.3 %
Wind	500	28.8 %
Total	1737.0	100 %

Notes:

1. NLH generation is combination of NLH, Exploits and NUGs

Appendix E graphically shows the results of both the overall system and the 20 wind turbine sites. There are no voltage concerns with the distributed generation throughout the island as the wind generation sources are capable of contributing to voltage support. Table 6 below outlines the results of the nine single element contingency events.

Table 6Single Element Contingency with 500MW Wind Generation2020 Peak Load Base Case

Contingency Event	Description	Results	Mitigation
1	TL233 Outage	No voltage or overload violations	None
2	TL211 Outage	No voltage or overload violations	None
3	TL228 Outage	No voltage or overload violations	None
4	TL248 Outage (Current protection scheme has tripping of TL247 and loss of Cat Arm generation if total generation exceeds 75MW, thus U/F load shedding is likely)	Voltages low on 230kV buses West Coast, line overloads on the following lines: i) TL222 – 115% ii) TL223 – 125% iii) TL224 – 142% iv) TL225 – 169%	Reduction of Cat Arm hydro generation and re-dispatch to Bay d'Espoir alleviates overloading issues. Transformer tap setting and generator voltage setpoint changes eliminate voltage issues.
5	TL232 Outage	No voltage or overload violations	None
6	TL231 Outage	No voltage or overload violations	None
7	TL202 Outage	Low voltage at VBN, no overload violations	HRD output increased from 210 to 240 MW
8	TL217 Outage	No voltage or overload violations	None
9	HRD #3 Outage	Extreme low voltages on east coast, < 0.90pu	HRD G1 and G2 output increased to 100 MW each.

500 MW of wind generation can be placed on the island isolated system from a steady state point of view with no voltage or overloading concerns for the 2020 Peak Load Base case and associated

contingencies. Re-dispatch of hydro generation would be required for line outage contingency of TL248 (DLK-MDR).

4.1.3. 2035 Extreme Light Load

Maximum wind penetration of 500MW was achieved in the steady state load flow case with the generation dispatch levels presented in Table 7 below.

2035 Extreme Light Load Base Case					
Generation Source	Generation Dispatch Level (MW)	Percent of Total Generation			
NLH	109.5 (Note 1)	15.5 %			
Kruger	97.1	13.7 %			
Wind	500	70.8 %			
Total	706.6	100 %			

Table 7
Generation Dispatch Levels
2035 Extreme Light Load Base Case

Note 1: BDE Unit 1 on for 28.5MW, BDE7 on for 81MW, CAT2 / HRD3 / HWD GT / SVL GT all in Sync. Cond. Mode

Appendix F graphically shows the results of both the overall system and the 20 wind turbine sites. There are no voltage concerns with the distributed generation throughout the island as the wind generation sources are capable of contributing to voltage support. Table 8 below outlines the results of the nine single element contingency events.

Table 8 Single Element Contingency with 500MW Wind Generation 2035 Extreme Light Load Base Case

Contingency	Description	Results	Mitigation
Event			
1	TL233 Outage	No voltage or overload violations	None
2	TL211 Outage	Slightly high voltages at BBK and	SVL G.T. voltage setpoint
		SVL, greater than 1.05 pu	adjustment solves high
			voltage concerns
3	TL228 Outage	No voltage or overload violations	None
4	TL248 Outage	No voltage or overload violations	None
5	TL232 Outage	No voltage or overload violations	None
6	TL231 Outage	No voltage or overload violations	None
7	TL202 Outage	No voltage or overload violations	None
8	TL217 Outage	No voltage or overload violations	None
9	HRD SC #3 Outage	No voltage or overload violations	None

500 MW of wind generation can be placed on the island isolated system from a steady state point of view with no voltage or overloading concerns for the 2035 Extreme Light Load Base case and associated contingencies.

With 500 MW of wind dispatched in the extreme light load case, existing Non Utility Generators (NUGs) have been turned off, this in reality is non dispatchable generation that Newfoundland & Labrador Hydro would utilize before non dispatchable wind generation. Presently, there is approximately 125 MW of NUGs available, excluding the existing 50 MW of wind generation. Therefore the practical steady state limit of non dispatchable wind generation under extreme light loading would be 375 MW.

4.1.4. 2035 Peak Load

Maximum wind penetration of 500MW was achieved in the steady state load flow case with the generation dispatch levels presented in Table 9 below.

2035 Peak Load Base Case							
Generation Source	Generation Dispatch Level (MW)	Percent of Total Generation					
NLH	1402.5	69.7 %					
Kruger	109.1	5.4 %					
Wind	500	24.9 %					
Total	2011.6	100 %					

Table 9 Generation Dispatch Levels 2035 Peak Load Base Case

Appendix G graphically shows the results of both the overall system and the 20 wind turbine sites. There are no voltage concerns with the distributed generation throughout the island as the wind generation sources are capable of contributing to voltage support. Table 10 below outlines the results of the nine single element contingency events.

Table 10 Single Element Contingency with 500MW Wind Generation 2035 Peak Load Base Case

Contingency Event	Description	Results	Mitigation
1	TL233 Outage	No voltage or overload violations	None
2	TL211 Outage	No voltage or overload violations	None
3	TL228 Outage	No voltage or overload violations	None
4	TL248 Outage	Low voltage on 230kV bus at MDR,	Reduction of Cat Arm hydro
		line overloads on the following	generation and re-dispatch
		lines:	to Bay d'Espoir alleviates
		i) TL222 – 107%	overloading issues.
		ii) TL223 – 118%	Transformer tap setting and
		iii) TL224 – 137%	generator voltage setpoint
		iv) TL225 – 169%	changes eliminate voltage
			issues.
5	TL232 Outage	No voltage or overload violations	None
6	TL231 Outage	No voltage or overload violations	None
7	TL202 Outage	Low voltages at WAV / SSD / VBN,	HRD output increased from
		TL206 at 106% rating	340 to 400 MW to mitigate
			voltage and overload issues
8	TL217 Outage	Low voltages at WAV / SSD / VBN	HRD output increased from
			340 to 400 MW to mitigate
			voltage issues
9	HRD #3 Outage	Extreme low voltages on east	HRD G1 and G2 output
		coast, < 0.90pu, generation deficit	increased to 120 MW each
			to make up for deficit.

500 MW of wind generation can be placed on the island isolated system from a steady state point of view with no voltage or overloading concerns for the 2035 Peak Load Base case and associated contingencies. Re-dispatch of hydro generation would be required for line outage contingency of TL248 (DLK-MDR).

4.2.Transient Stability Results

Transient stability analysis was performed on each of the four base cases by incrementing the wind power generation dispatch to the island grid by 25 MW and determining the dispatch level that violated the stability criteria outlined previously. The following system events were simulated:

- i) Load rejection of 74.3 MW from Voisey Bay Nickel processing facility;
- ii) Survive loss of the largest on line generator;
- iii) Sudden load increase of 15MW at VBN;
- iv) Three phase fault for 6 cycles followed by subsequent tripping of 230kV transmission lines at the following locations:
 - Hardwoods Terminal Station (trip TL242);
 - Sunnyside Terminal Station (trip TL202);
 - Bottom Brook Terminal Station (trip TL233);
 - Stony Brook Terminal Station (trip TL231)
- v) Line to ground fault followed by unsuccessful reclose and eventual trip of the following lines:
 - TL242 (fault at Holyrood end) 30 cycle reclose time;
 - TL202 (fault at Sunnyside end) 45 cycle reclose time

Results indicate that maximum wind generation dispatch for the extreme light load base cases was determined by the sudden load increase of 15MW, which brought system frequency close to 59.6 Hz. The following sections outline the stability results of each base case year's maximum wind generation dispatch level for the simulated system events.

4.2.1. 2020 Extreme Light Load

A maximum wind generation dispatch level of 225 MW was determined based on a sudden load increase of 15 MW causing system frequency to decline to 59.6 Hz. Table 11 outlines system generation production and inertia for the maximum wind generation dispatch level of 225 MW. Table 12 outlines the results of the stability analysis for each system event simulated. Appendix H graphically shows the results of each event studied for maximum wind generation.

Table 11 Generation Dispatch Levels 2020 Extreme Light Load Base Case

Generation Source	Generation Dispatch Level (MW)	Percent of Total Generation	Inertia (MW.s)
NLH	278.0	45.4 %	2685
Kruger	109.1	17.8 %	655 ¹
Wind	225	36.8 %	0
Total	612.1	100 %	3340

Note 1: Comprised of motor and generator inertia (168 and 487 respectively)

	2020 Extreme Light Load Base Case							
Case	Description	Stable	Max Freq (Hz)	Min Freq (Hz)	Load Shedding Amount (MW)	Wind Turbines Remain Connected	Comments	
1	Loss of VBN Load of 74.3 MW	Yes	60.8	-	0	7/9	Over frequency settings modified to trip before 61.2Hz on several WT's	
2	Loss of Largest Unit (BDE 90MW)	Yes	-	58.3	44.0	9/9	Frequency exceeds 59.0 Hz after 19 seconds	
3	Load Increase of 15 MW	Yes	-	59.6	0	9/9	Frequency level reached criteria	
4	3Ph Flt at HWD (Trip TL242)	Yes	60.3	-	0	9/9	No issues ¹	
5	3Ph Flt at SSD (Trip TL202)	Yes	60.3	-	0	9/9	No issues ¹	
6	3Ph Flt at STB (Trip TL231)	Yes	60.2	-	0	9/9	No issues ¹	
7	3Ph Flt at BBK (Trip TL233)	Yes	60.1	-	0	9/9	No issues ¹	
8	LG Flt Near HRD on TL242 – 30cyc	Yes	60.1	-	0	9/9	No issues ¹	
9	LG Flt Near SSD on TL202 – 45cyc	Yes	60.1	-	0	9/9	No issues ¹	

Table 12 Stability Results for 225 MW Wind Generation Dispatch Level

Note 1: LVRT Capability on wind turbines successful for this fault

4.2.2. 2020 Peak Load

A maximum wind generation dispatch level of 500 MW was observed to cause no issues from a transient stability point of view. Table 13 outlines system generation production and inertia for the maximum wind generation dispatch level of 500 MW. Table 14 outlines the results of the stability analysis for each system event simulated. Appendix I graphically shows the results of each event studied for maximum wind generation.

Table 13Generation Dispatch Levels2020 Peak Load Base Case

Generation Source	Generation Dispatch Level (MW)	Percent of Total Generation	Inertia (MW.s)
NLH	1146.2	65.3 %	6542
Kruger	109.1	6.2 %	655 ¹
Wind	500	28.5 %	0
Total	1755.3	100 %	7197

Note 1: Comprised of motor and generator inertia (168 and 487 respectively)

Case	Description	Stable	Max Freq (Hz)	Min Freq (Hz)	Load Shedding Amount (MW)	Wind Turbines Remain Connected	Comments
1	Loss of VBN Load of 74.3 MW	Yes	60.4	-	0	9/9	No issues
2	Loss of Largest Unit (BDE 110MW)	Yes	-	58.8	34.6	9/9	Frequency exceeds 59.0 Hz after 8 seconds
3	Load Increase of 15 MW	Yes	-	59.9	0	9/9	No issues
4	3Ph Flt at HWD (Trip TL242)	Yes	60.3	-	0	9/9	Voltage at HRD Plant @ 0.25pu, no loss of unit as generation <80 MW per unit
5	3Ph Flt at SSD (Trip TL202)	Yes	60.4	-	0	9/9	Voltage at HRD Plant @ 0.45pu, no loss of unit as generation <80 MW per unit
6	3Ph Flt at STB (Trip TL231)	Yes	60.1	-	0	9/9	No issues ¹
7	3Ph Flt at BBK (Trip TL233)	Yes	60.1	-	0	9/9	No issues ¹
8	LG Flt Near HRD on TL242 – 30cyc	Yes	60.1	-	0	9/9	No issues ¹
9	LG Flt Near SSD on TL202 – 45cyc	Yes	60.1	-	0	9/9	No issues ¹

Table 14Stability Results for 500 MW Wind Generation Dispatch Level2020 Peak Load Base Case

Note 1: LVRT Capability on wind turbines successful for this fault

4.2.3. 2035 Extreme Light Load

A maximum wind generation dispatch level of 300 MW was observed based on a sudden load increase of 15 MW causing system frequency to decline to 59.6 Hz. Table 15 outlines system generation production and inertia for the maximum wind generation dispatch level of 300 MW. Table 16 outlines the results of the stability analysis for each system event simulated. Appendix J graphically shows the results of each event studied for maximum wind generation.

2035 Extreme Light Load Base Case							
Generation Source	Generation Dispatch Level (MW)	Percent of Total Generation	Inertia (MW.s)				
NLH	274.7	40.2 %	2685				
Kruger	109.1	16.0 %	655 ¹				
Wind	300	43.8 %	0				
Total	683.8 ²	100 %	3340				

Table 15 Generation Dispatch Levels 2035 Extreme Light Load Base Case

Note 1: Comprised of motor and generator inertia (168 and 487 respectively)

Note 2: Dispatch levels differ slightly from Load Flow case as 18MW of Exploits Generation was netted with load because of convergence problems on Bus 29 during stability simulations.

Table 16Stability Results for 300 MW Wind Generation Dispatch Level2035 Extreme Light Load Base Case

Case	Description	Stable	Max Freq (Hz)	Min Freq (Hz)	Load Shedding Amount (MW)	Wind Turbines Remain Connected	Comments
1	Loss of VBN Load of 74.3 MW	Yes	60.8	-	0	7/9	Over frequency settings modified to trip before 61.2Hz on several WT's
2	Loss of Largest Unit (BDE 81MW)	Yes	-	58.5	36.0	9/9	Frequency exceeds 59.0 Hz after 18 seconds
3	Load Increase of 15 MW	Yes	-	59.6	0	9/9	Frequency level reached criteria
4	3Ph Flt at HWD (Trip TL242)	Yes	60.4	-	0	9/9	No issues ¹
5	3Ph Flt at SSD (Trip TL202)	Yes	60.5	59.5	0	9/9	No issues ¹
6	3Ph Flt at STB (Trip TL231)	Yes	60.6	-	0	9/9	No issues ¹
7	3Ph Flt at BBK (Trip TL233)	Yes	60.6	-	0	9/9	No issues ¹
8	LG Flt Near HRD on TL242 – 30cyc	Yes	60.1	-	0	9/9	No issues ¹
9	LG Flt Near SSD on TL202 – 45cyc	Yes	60.1	-	0	9/9	No issues ¹

Note 1: LVRT Capability on wind turbines successful for this fault

4.2.4. 2035 Peak Load

A maximum wind generation dispatch level of 500 MW was observed to cause no issues from a transient stability point of view. Table 17 outlines system generation production and inertia for the maximum wind generation dispatch level of 500 MW. Table 18 outlines the results of the stability analysis for each system event simulated. Appendix K graphically shows the results of each event studied for maximum wind generation.

Generation Source	Generation Dispatch Level (MW)	Dispatch Level Generation						
NLH	1404.4	69.8 %	6854					
Kruger	109.1	5.4 %	655 ¹					
Wind	500	24.8 %	0					
Total	2013.5	100 %	7509					

Table 17
Generation Dispatch Levels - 2035 Peak Load Base Case

Note 1: Comprised of motor and generator inertia (168 and 487 respectively

Table 18Stability Results for 500 MW Wind Generation Dispatch Level

2035	Peak	Load	Base	Case
------	------	------	------	------

Case	Description	Stable	Max Freq (Hz)	Min Freq (Hz)	Load Shedding Amount (MW)	Wind Turbines Remain Connected	Comments
1	Loss of VBN Load of 74.3 MW	Yes	60.3	-	0	9/9	No issues
2	Loss of Largest Unit (BDE 142MW)	Yes	-	58.7	91.3	9/9	Frequency exceeds 59.0 Hz after 18 seconds
3	Load Increase of 15 MW	Yes	-	59.9	0	9/9	No issues
4	3Ph Flt at HWD (Trip TL242)	Yes	60.5	-	0	9/9	Voltage at HRD Plant not less than 0.5pu, no loss of unit as generation <80 MW per unit
5	3Ph Flt at SSD (Trip TL202)	Yes	60.5	-	0	9/9	Voltage at HRD Plant not less than 0.5pu, no loss of unit as generation <80 MW per unit
6	3Ph Flt at STB (Trip TL231)	Yes	60.2	-	0	9/9	No issues ¹
7	3Ph Flt at BBK (Trip TL233)	Yes	60.2	-	0	9/9	No issues ¹
8	LG Flt Near HRD on TL242 – 30cyc	Yes	60.1	-	0	9/9	No issues ¹
9	LG Flt Near SSD on TL202 – 45cyc	Yes	60.1	-	0	9/9	No issues ¹
Note 1	1: LVRT Capability o	n wind tu	rbines s	uccessfu	l for this fau	lt	

4.3 Multiple Loss of Wind Farms

Transient stability analysis was conducted on the sudden loss of multiple wind farms geographically close to one another as a result of high wind speed cut-out, which typically is set at 25m/sec. This analysis was conducted for the 2020 Extreme Light Load base case with 225MW of wind dispatched, as this is considered the most onerous case due to minimum system inertia and maximum wind penetration. Three cases were analyzed, these being; i) Loss of two 25MW farms simultaneously, ii) Loss of two 25MW farms simultaneously with additional system inertia, and iii) Loss of three 25MW farms simultaneously with additional system inertia. Appendix L graphically shows the system frequency results of each event studied.

4.3.1 Loss of Two 25MW Wind Farms

The loss of two 25MW wind farms simultaneously due to high wind speed during 2020 Extreme Light Load conditions is expected to cause approximately 9MW of load shedding as system frequency drops below the 58.8 Hz under frequency load shed setting.

4.3.2 Loss of Two 25MW Wind Farms - Additional System Inertia

With the addition of two 300MVA high inertia synchronous condensers at Sunnyside having an H constant of 7.84 each, the loss of two 25MW wind farms simultaneously due to high wind speed during 2020 Extreme Light Load conditions is not expected to cause any under frequency load shedding. Minimum frequency is approximately 58.86Hz, but recovers above 59Hz before the 15 second timer expired, thus avoiding any under frequency load shedding.

4.3.3 Loss of Three 25MW Wind Farms - Additional System Inertia

With the addition of two 300MVA high speed high inertia synchronous condensers at Sunnyside having an H constant of 7.84 each, the loss of three 25MW wind farms simultaneously due to high wind speed during 2020 Extreme Light Load conditions is expected to cause approximately 20MW of load shedding. Minimum frequency is approximately 58.64Hz and load shedding occurs as a result of both 58.8Hz and 59.0Hz / 15 second protection settings.

These results highlight the importance of geographically diversifying wind farms to avoid simultaneous loss of nearby wind farms due to high wind speeds and system load shedding as a result. While the addition of rotating mass in the form of high inertia synchronous condensers will eliminate 9MW of load shedding for loss of two wind farms, it will not avoid load shedding as a result of simultaneous loss of three wind farms. It is not clear whether or not the cost associated with the addition of inertia is justified as the probability of this event occurring during extreme light load conditions is unknown.

In the absence of detailed wind surveys, it is recommended that future wind farm developments be geographically dispersed to avoid the possibility of this event from occurring. As well, detailed study is

recommended to investigate alternate solutions of avoiding under frequency load shedding due to loss of multiple wind farms. Possible solutions may include high speed flywheel energy storage systems and dispatch of fast response generation such as gas turbines during periods of predicted high wind speeds and high wind penetration.

5.0 Conclusions

Load flow analysis of the two base case years 2020 and 2035 indicate that there are no steady state restrictions up to and including 500 MW of wind power generation for the Isolated Island option. 500 MW was the maximum steady state wind generation dispatch analysed due to the fact that NLH generation at extreme light load conditions approaches this value. The practical steady state limit during extreme light load conditions would be limited to 375MW due to other NUG generation dispatch of approximately 125MW.

Transient stability analysis of the two base case years indicate a maximum wind dispatch level of 225 MW and 300 MW for the 2020 and 2035 Extreme Light Load cases respectively. This is based on a sudden load increase of 15 MW causing a frequency decline to 59.6 Hz which was the pre-defined criteria for frequency deviation. There was no restriction up to and including 500 MW of wind generation for peak loading periods of 2020 and 2035. System events on the 230kV system such as three phase and line to ground faults that were cleared within normal operating times did not adversely affect operation of the wind generation due to the advances of the Low Voltage Ride Through (LVRT) capability. Table 19 below summarizes the resulting restrictions as a result of the transient stability analysis.

Table 19 Maximum Wind Generation Dispatch Stability Analysis Results

	Ext	treme Light Load			Peak Load	
Year	Wind Generation Level (MW)	Wind Penetration Level (%)	System Inertia (MW.s)	Wind Generation Level (MW)	Wind Penetration Level (%)	System Inertia (MW.s)
2020	225	36.8	3340	500	28.5	7197
2035	300	43.8	3340	500	24.8	7509

Based on the simulation studies conducted in this report, the transient stability constraint is found to be the limiting factor in determining the amount of wind penetration during the extreme light load conditions. Thus, it is recommended that no more than 225MW and 300MW of net wind generation is dispatched during the extreme light load conditions during the years 2020 and 2035, respectively. However, the extreme light loading conditions are likely to occur for very short durations of the year, particularly during night hours of the summer season, when wind generation profile is usually at its minimum. Thus, it is anticipated that the available wind generation under light load conditions is in close proximity to the wind penetration level limited by the transient stability constraint. It is recommended that historical wind data be obtained for potential wind sites around the island, which can then be used to determine time and duration of minimal wind generation profiles coinciding with minimum system loading.

Overall analysis indicates that the current wind generation technology of the Doubly Fed Induction Generator (DFIG) model, similar to the Vestas V90 used in St. Lawrence and Fermeuse, provides voltage

support on the island when dispatch is widely distributed. As well, the control system of the DFIG model aids in frequency response control for the first 5-7 seconds during certain system events, such as loss of generation or sudden load increase. This is accomplished by converting the kinetic energy of the spinning turbine blades into excess power which in turn allows time for conventional generation governors to respond to system conditions.

The analysis presented in this report does not assume time varying wind patterns and further analysis is recommended to simulate its effect on overall system frequency control. It is believed that higher wind penetration levels on the island system could cause larger frequency deviations than currently experienced without additional fast acting counter measures. These could include high inertia synchronous condensers or high speed flywheel energy storage / regulation plants to minimize frequency deviations as a result of time varying wind patterns.

These results highlight the importance of geographically diversifying wind farms to avoid simultaneous loss of nearby wind farms due to high wind speeds and system load shedding as a result. In the absence of detailed wind surveys, it is recommended that future wind farm developments be geographically dispersed to avoid the possibility of this event from occurring. As well, detailed study is recommended to investigate alternate solutions of avoiding under frequency load shedding due to loss of multiple wind farms. Possible solutions may include high speed flywheel energy storage systems and dispatch of fast response generation such as gas turbines during periods of predicted high wind and high wind penetration.

APPENDIX A - LOAD FORECAST (2018 – 2067)

NP Energy Purchases (GWh)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2018	688	631	623	505	432	353	329	327	340	429	519	653	1302	1294	1115	972	, 851	716	624	596	655	855	997	1294
2010	698	640	633	513	439	358	334	332	345	435	527	663	1313	1305	1113	987	863	727	633	604	665	867	1012	1305
2010	705	646	638	515	443	362	337	335	349	439	532	669	1329	1322	1132	996	872	734	639	610	671	875	1012	1322
2020	703	657	649	527	451	368	343	341	355	447	541	680	1343	1335	1162	1014	887	746	650	620	682	890	1040	1335
2022	729	668	660	536	459	375	349	346	361	455	550	692	1362	1354	1182	1014	902	759	660	631	693	905	1040	1354
2023	740	678	670	544	466	381	355	352	367	462	559	703	1385	1377	1200	1047	916	770	671	640	704	918	1074	1377
2024	750	687	680	552	473	386	360	357	372	468	567	712	1404	1396	1217	1062	929	781	680	649	713	931	1089	1396
2025	760	696	689	560	479	391	364	361	377	475	574	722	1422	1414	1233	1076	941	791	689	657	722	943	1104	1414
2026	769	705	697	566	485	396	369	366	381	480	581	730	1439	1430	1248	1090	952	801	697	665	731	954	1117	1430
2027	779	714	707	575	492	402	374	371	387	487	589	741	1455	1446	1266	1105	966	812	707	675	741	967	1133	1446
2028	790	724	716	583	499	408	379	376	392	494	597	750	1472	1464	1283	1120	979	823	716	684	751	980	1149	1464
2029	799	732	724	589	505	412	384	380	396	500	604	759	1489	1481	1298	1133	990	832	724	691	759	991	1162	1481
2030	808	741	733	597	512	418	389	385	401	506	612	768	1504	1495	1314	1148	1002	842	733	700	769	1003	1177	1495
2031	817	749	741	604	517	422	393	389	406	512	618	777	1519	1510	1329	1161	1014	852	741	708	777	1014	1190	1510
2032	826	757	750	610	523	427	398	394	410	517	625	785	1534	1525	1343	1174	1025	861	749	715	786	1025	1203	1525
2033	835	765	758	617	529	432	402	398	415	523	632	794	1549	1540	1358	1187	1036	870	757	723	794	1036	1217	1540
2034	844	774	766	624	535	437	406	402	420	529	639	802	1564	1555	1373	1200	1047	880	765	731	802	1047	1230	1555
2035	853	781	774	631	541	441	411	406	424	534	646	811	1578	1569	1387	1212	1058	889	773	738	810	1057	1243	1569
2036	861	789	781	637	546	446	415	410	428	539	652	818	1592	1582	1400	1224	1068	897	780	745	818	1067	1254	1582
2037	868	796	788	643	551	450	419	414	432	545	658	826	1605	1596	1413	1235	1078	905	787	752	825	1077	1266	1596
2038	876	803	796	649	557	454	422	418	436	550	664	833	1618	1609	1427	1247	1088	914	794	759	833	1087	1278	1609
2039	884	810	803	655	562	459	426	422	440	555	670	841	1632	1622	1440	1258	1098	922	802	766	841	1096	1290	1622
2040	892	817	810	661	567	463	430	425	444	560	676	848	1644	1635	1452	1269	1108	930	808	772	848	1106	1301	1635
2041	899	824	816	666	571	466	434	429	447	564	681	855	1656	1647	1464	1280	1116	937	815	778	854	1114	1312	1647
2042	906	830	823	671	576	470	437	432	451	569	687	862	1668	1658	1475	1290	1125	945	821	784	861	1123	1322	1658
2043	913	837	829	677	581	474	441	435	454	573	692	868	1680	1670	1487	1300	1134	952	827	790	867	1132	1333	1670
2044	920	843	835	682	585	478	444	439	458	577	697	875	1692	1682	1498	1310	1143	959	834	796	874	1140	1343	1682
2045	927	849	842	687	590	481	447	442	462	582	703	882	1703	1693	1510	1320	1152	967	840	802	881	1149	1353	1693
2046	933	855	848	692	594	485	451	445	465	586	708	888	1714	1704	1521	1330 1339	1160	973	846	808	887	1157	1363	1704
2047 2048	940 946	861 867	854 859	697 702	598 603	488 492	454 457	448 452	468 471	590 594	713 718	894 900	1725 1736	1715 1726	1531 1542	1339	1168 1176	980 987	852 858	814 819	893 899	1165 1173	1373 1382	1715 1726
2048	940	873	865	702	607	492	460	452	471	599	723	906	1730	1720	1542	1349	1170	994	863	815	905	1175	1382	1720
2049	959	878	871	707	611	499	463	458	473	602	727	912	1757	1747	1563	1358	1194	1000	869	820	903 911	1181	1401	1737
2050	964	884	876	716	615	502	466	460	481	606	732	918	1766	1756	1572	1375	1192	1000	874	835	916	1195	1409	1756
2051	970	889	881	720	618	505	469	463	483	610	736	923	1776	1765	1581	1383	1206	1012	879	840	921	1202	1418	1765
2053	975	894	886	724	622	508	472	466	486	613	740	928	1785	1775	1590	1391	1213	1018	884	845	927	1209	1426	1775
2054	981	899	891	728	626	511	474	468	489	617	745	934	1795	1784	1600	1399	1220	1024	889	849	932	1215	1434	1784
2055	987	904	896	733	629	514	477	471	492	620	749	939	1804	1794	1609	1408	1227	1029	894	854	937	1222	1443	1794
2056	992	909	902	737	633	517	480	474	495	624	753	944	1813	1803	1618	1416	1234	1035	899	859	942	1229	1451	1803
2057	998	914	907	741	637	520	483	477	498	627	757	950	1823	1812	1627	1424	1241	1041	904	864	948	1236	1459	1812
2058	1003	919	912	746	641	523	485	479	500	631	762	955	1832	1822	1637	1432	1248	1047	909	869	953	1243	1468	1822
2059	1009	924	917	750	644	526	488	482	503	635	766	960	1842	1831	1646	1440	1255	1053	914	874	958	1250	1476	1831
2060	1015	930	922	754	648	529	491	485	506	638	770	966	1851	1840	1655	1448	1262	1059	919	878	964	1257	1484	1840
2061	1020	935	927	758	652	532	494	487	509	642	775	971	1860	1850	1664	1456	1269	1065	925	883	969	1264	1493	1850
2062	1026	940	932	763	655	535	497	490	512	645	779	976	1870	1859	1674	1465	1276	1070	930	888	974	1270	1501	1859
2063	1031	945	937	767	659	538	499	493	515	649	783	982	1879	1868	1683	1473	1283	1076	935	893	979	1277	1509	1868
2064	1037	950	942	771	663	541	502	495	517	653	788	987	1889	1878	1692	1481	1291	1082	940	898	985	1284	1518	1878
2065	1042	955	948	775	666	544	505	498	520	656	792	992	1898	1887	1701	1489	1298	1088	945	903	990	1291	1526	1887
2066	1048	960	953	780	670	547	508	501	523	660	796	998	1907	1896	1711	1497	1305	1094	950	907	995	1298	1534	1896
2067	1054	965	958	784	674	550	510	504	526	663	800	1003	1917	1906	1720	1505	1312	1100	955	912	1001	1305	1543	1906

Hydro Rural Energy Purchases (Bulk Deliveries) (GWh)

Hydro Rural Demand Purchases (MW)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2018	46.9	40.1	41.8	35.4	34.1	31.1	29.8	28.6	28.1	31.1	34.9	44.3		90.5	86.9	80.1	72.9	68.6	63.8	59.3	56.1	59.3	63.4	72.4	90.5
2019	46.4	39.6	41.3	35.0	33.7	30.8	29.5	28.3	27.8	30.8	34.6	43.9		89.6	86.0	79.3	72.1	67.9	63.1	58.7	55.5	58.7	62.7	71.6	89.6
2020	46.1	39.4	41.1	34.8	33.5	30.6	29.3	28.1	27.7	30.6	34.4	43.6		89.0	85.5	78.8	71.7	67.5	62.8	58.3	55.2	58.3	62.3	71.2	89.0
2021	46.4	39.6	41.3	35.0	33.7	30.8	29.5	28.2	27.8	30.8	34.6	43.8		89.5	85.9	79.2	72.0	67.8	63.1	58.6	55.5	58.6	62.6	71.6	89.5
2022	46.8	40.0	41.7	35.3	34.0	31.0	29.8	28.5	28.1	31.0	34.9	44.2		90.3	86.7	79.9	72.7	68.4	63.7	59.1	56.0	59.1	63.2	72.2	90.3
2023	47.1	40.3	42.0	35.6	34.3	31.3	30.0	28.7	28.3	31.3	35.1	44.6		91.0	87.3	80.5	73.2	69.0	64.1	59.6	56.4	59.6	63.7	72.8	91.0
2024	47.4	40.5	42.3	35.8	34.5	31.5	30.2	28.9	28.5	31.5	35.4	44.8		91.6	87.9	81.0	73.7	69.4	64.5	60.0	56.8	60.0	64.1	73.2	91.6
2025	47.7	40.7	42.5	36.0	34.7	31.6	30.3	29.0	28.6	31.6	35.5	45.1		92.1	88.4	81.5	74.1	69.8	64.9	60.3	57.1	60.3	64.4	73.6	92.1
2026	48.0	41.0	42.7	36.2	34.9	31.8	30.5	29.2	28.8	31.8	35.8	45.3		92.6	88.9	81.9	74.5	70.2	65.3	60.6	57.4	60.6	64.8	74.1	92.6
2027	48.3	41.3	43.1	36.5	35.2	32.1	30.8	29.4	29.0	32.1	36.0	45.7	9	93.3	89.6	82.6	75.1	70.7	65.8	61.1	57.9	61.1	65.3	74.7	93.3
2028	48.7	41.6	43.4	36.7	35.4	32.3	31.0	29.7	29.2	32.3	36.3	46.0	9	94.0	90.2	83.2	75.7	71.2	66.3	61.6	58.3	61.6	65.8	75.2	94.0
2029	49.0	41.9	43.7	37.0	35.7	32.5	31.2	29.9	29.4	32.5	36.5	46.3	9	94.6	90.9	83.8	76.2	71.7	66.7	62.0	58.7	62.0	66.2	75.7	94.6
2030	49.4	42.2	44.0	37.2	35.9	32.8	31.4	30.1	29.6	32.8	36.8	46.7	9	95.3	91.5	84.3	76.7	72.2	67.2	62.4	59.1	62.4	66.7	76.2	95.3
2031	49.6	42.4	44.2	37.4	36.1	32.9	31.6	30.2	29.8	32.9	37.0	46.9	9	96.3	92.4	85.2	77.5	73.0	67.9	63.0	59.7	63.0	67.4	77.0	96.3
2032	49.9	42.6	44.4	37.6	36.3	33.1	31.7	30.4	29.9	33.1	37.2	47.2	9	96.8	92.9	85.6	77.9	73.3	68.2	63.4	60.0	63.4	67.7	77.4	96.8
2033	50.1	42.9	44.7	37.8	36.5	33.3	31.9	30.5	30.1	33.3	37.4	47.4	9	97.3	93.4	86.1	78.3	73.7	68.6	63.7	60.3	63.7	68.1	77.8	97.3
2034	50.4	43.1	44.9	38.0	36.7	33.5	32.1	30.7	30.2	33.5	37.6	47.7	9	97.8	93.9	86.5	78.7	74.1	68.9	64.0	60.6	64.0	68.4	78.2	97.8
2035	50.7	43.3	45.1	38.2	36.9	33.6	32.2	30.9	30.4	33.6	37.8	47.9	9	98.3	94.4	87.0	79.1	74.5	69.3	64.4	60.9	64.4	68.8	78.6	98.3
2036	50.9	43.5	45.4	38.4	37.0	33.8	32.4	31.0	30.6	33.8	38.0	48.2	9	98.8	94.9	87.4	79.5	74.9	69.7	64.7	61.3	64.7	69.2	79.0	98.8
2037	51.2	43.8	45.6	38.6	37.2	34.0	32.6	31.2	30.7	34.0	38.2	48.4		99.3	95.3	87.9	79.9	75.3	70.0	65.0	61.6	65.0	69.5	79.5	99.3
2038	51.5	44.0	45.8	38.8	37.4	34.2	32.7	31.3	30.9	34.2	38.4	48.7		99.8	95.8	88.3	80.4	75.7	70.4	65.4	61.9	65.4	69.9	79.9	99.8
2039	51.7	44.2	46.1	39.0	37.6	34.3	32.9	31.5	31.0	34.3	38.6	48.9		00.3	96.3	88.8	80.8	76.1	70.7	65.7	62.2	65.7	70.2	80.3	100.3
2040	52.0	44.4	46.3	39.2	37.8	34.5	33.1	31.7	31.2	34.5	38.8	49.2		00.8	96.8	89.2	81.2	76.4	71.1	66.1	62.5	66.1	70.6	80.7	100.8
2041	52.2	44.6	46.5	39.4	38.0	34.7	33.2	31.8	31.3	34.7	38.9	49.4		01.4	97.3	89.7	81.6	76.8	71.5	66.4	62.8	66.4	70.9	81.1	101.4
2042	52.5	44.9	46.8	39.6	38.2	34.8	33.4	32.0	31.5	34.8	39.1	49.6		01.9	97.8	90.1	82.0	77.2	71.8	66.7	63.2	66.7	71.3	81.5	101.9
2043	52.8	45.1	47.0	39.8	38.4	35.0	33.6	32.1	31.7	35.0	39.3	49.9		02.4	98.3	90.6	82.4	77.6	72.2	67.1	63.5	67.1	71.7	81.9	102.4
2044	53.0	45.3	47.3	40.0	38.6	35.2	33.8	32.3	31.8	35.2	39.5	50.1		02.9	98.8	91.0	82.8	78.0	72.5	67.4	63.8	67.4	72.0	82.3	102.9
2045	53.3	45.5	47.5	40.2	38.8	35.4	33.9	32.5	32.0	35.4	39.7	50.4		03.4	99.3	91.5	83.2	78.4	72.9	67.7	64.1	67.7	72.4	82.7	103.4
2046 2047	53.6	45.8	47.7	40.4 40.6	39.0 39.1	35.5 35.7	34.1 34.3	32.6 32.8	32.1 32.3	35.5 35.7	39.9 40.1	50.6 50.9		03.9	99.7 100.2	92.0 92.4	83.6	78.8 79.1	73.2	68.1 68.4	64.4 64.7	68.1 68.4	72.7 73.1	83.1	103.9 104.4
2047	53.8 54.1	46.0 46.2	48.0 48.2	40.8	39.1	35.9	34.5 34.4	32.8 32.9	32.5	35.7	40.1	50.9 51.1		04.4 04.9	100.2	92.4 92.9	84.0 84.5	79.1	73.6 74.0	68.7	65.0	68.7	73.4	83.5 83.9	104.4
2048	54.1 54.4	46.4	48.2 48.4	40.8	39.5	36.1	34.4 34.6	33.1	32.5	36.1	40.5	51.1 51.4		04.9 05.4	100.7	92.9 93.3	84.5 84.9	79.9	74.0	69.1	65.4	69.1	73.4	84.3	104.9
2049	54.4 54.6	46.7	48.4 48.7	41.0	39.3	36.2	34.0	33.3	32.0	36.2	40.3	51.4 51.6		05.9	101.2	93.8 93.8	85.3	80.3	74.3	69.4	65.7	69.4	74.2	84.8	105.4
2050	54.0 54.9	46.9	48.9	41.2	39.9	36.4	34.9	33.4	32.9	36.4	40.9	51.0		06.4	101.7	93.8 94.2	85.7	80.3	75.0	69.7	66.0	69.7	74.5	85.2	105.5
2051	55.1	40.9	48.9	41.4	40.1	36.6	35.1	33.4	33.1	36.6	40.9	52.1		07.0	102.2	94.2 94.7	86.1	81.1	75.4	70.1	66.3	70.1	74.9	85.6	100.4
2052	55.4	47.3	49.4	41.8	40.3	36.8	35.3	33.7	33.2	36.8	41.3	52.4		07.5	103.2	95.1	86.5	81.5	75.8	70.4	66.6	70.4	75.2	86.0	107.5
2054	55.7	47.6	49.6	42.0	40.5	36.9	35.4	33.9	33.4	36.9	41.5	52.6		08.0	103.7	95.6	86.9	81.8	76.1	70.7	66.9	70.7	75.6	86.4	108.0
2055	55.9	47.8	49.8	42.2	40.7	37.1	35.6	34.1	33.6	37.1	41.7	52.9		08.5	104.1	96.0	87.3	82.2	76.5	71.1	67.3	71.1	75.9	86.8	108.5
2056	56.2	48.0	50.1	42.4	40.9	37.3	35.8	34.2	33.7	37.3	41.9	53.1		09.0	104.6	96.5	87.7	82.6	76.8	71.4	67.6	71.4	76.3	87.2	109.0
2057	56.5	48.2	50.3	42.6	41.1	37.5	35.9	34.4	33.9	37.5	42.1	53.4	10	09.5	105.1	96.9	88.2	83.0	77.2	71.7	67.9	71.7	76.7	87.6	109.5
2058	56.7	48.5	50.5	42.8	41.2	37.6	36.1	34.5	34.0	37.6	42.3	53.6	1	10.0	105.6	97.4	88.6	83.4	77.6	72.1	68.2	72.1	77.0	88.0	110.0
2059	57.0	48.7	50.8	43.0	41.4	37.8	36.3	34.7	34.2	37.8	42.5	53.9	1	10.5	106.1	97.8	89.0	83.8	77.9	72.4	68.5	72.4	77.4	88.4	110.5
2060	57.2	48.9	51.0	43.2	41.6	38.0	36.4	34.9	34.3	38.0	42.7	54.1	1	11.0	106.6	98.3	89.4	84.2	78.3	72.7	68.8	72.7	77.7	88.8	111.0
2061	57.5	49.1	51.2	43.4	41.8	38.2	36.6	35.0	34.5	38.2	42.9	54.4	1	11.5	107.1	98.7	89.8	84.6	78.6	73.1	69.2	73.1	78.1	89.2	111.5
2062	57.8	49.4	51.5	43.6	42.0	38.3	36.8	35.2	34.7	38.3	43.1	54.6	1	12.1	107.6	99.2	90.2	84.9	79.0	73.4	69.5	73.4	78.4	89.6	112.1
2063	58.0	49.6	51.7	43.8	42.2	38.5	36.9	35.3	34.8	38.5	43.3	54.9	1	12.6	108.1	99.6	90.6	85.3	79.4	73.7	69.8	73.7	78.8	90.1	112.6
2064	58.3	49.8	51.9	44.0	42.4	38.7	37.1	35.5	35.0	38.7	43.5	55.1	1	13.1	108.6	100.1	91.0	85.7	79.7	74.1	70.1	74.1	79.2	90.5	113.1
2065	58.6	50.0	52.2	44.2	42.6	38.9	37.3	35.7	35.1	38.9	43.7	55.4	1	13.6	109.0	100.5	91.4	86.1	80.1	74.4	70.4	74.4	79.5	90.9	113.6
2066	58.8	50.3	52.4	44.4	42.8	39.0	37.4	35.8	35.3	39.0	43.8	55.6	1	14.1	109.5	101.0	91.8	86.5	80.4	74.7	70.7	74.7	79.9	91.3	114.1
2067	59.1	50.5	52.6	44.6	43.0	39.2	37.6	36.0	35.4	39.2	44.0	55.9	1	14.6	110.0	101.4	92.3	86.9	80.8	75.1	71.1	75.1	80.2	91.7	114.6

CBPP Energy Purchases (GWh)

CBPP Peak Demand Purchases (MW)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ja	an	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2018	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	· 0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2010	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2020	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2021	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2022	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2023	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2024	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2025	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2026	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2027	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2028	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2029	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2030	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2031	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2032	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2033	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2034	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2035	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2036	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2037	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2038	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2039	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2040	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2041	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2042	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2043	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2044	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2045	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2046 2047	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0 23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2047	8.2 8.2	7.4 7.4	8.2 8.2	7.9 7.9	8.2 8.2	7.9 7.9	8.2 8.2	8.2 8.2	7.9 7.9	8.2 8.2	7.9 7.9	8.2 8.2	23 23		23.0	23.0 23.0									
2048	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2049	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2050	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2051	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2053	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2054	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2055	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2056	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2057	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23		23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2058	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2059	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2060	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2061	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2062	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2063	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2064	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2065	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2066	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
2067	8.2	7.4	8.2	7.9	8.2	7.9	8.2	8.2	7.9	8.2	7.9	8.2	23	.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0

NARL Energy Purchases (GWh)

			•													. ,								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2018	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2019	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2020	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2021	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2022	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2023	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2024	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2025	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2026	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2027	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2028	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2029	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2030	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2031	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2032	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2033	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2034	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2035	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2036	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2037	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2038	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2039	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2040	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2041	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2042	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2043	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2044	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2045	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2046	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2047	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2048	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2049	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2050	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2051	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2052	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2053	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2054	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2055	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2056	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2057	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2058	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2059	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2060	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2061	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2062	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2063	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2064	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2065	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2066	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5
2067	25.6	23.5	24.7	22.4	19.7	22.8	25.7	26.0	24.4	22.7	22.8	22.2	37.0	37.0	36.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	35.5	36.5

VI Energy Purchases (GWh)

	- 07		(-)													,								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2018	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2019	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2020	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2021	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2022	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2023	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2024	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2025	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2026	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2027	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2028	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2029	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2030	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2031	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2032	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2033	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2034	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2035	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2036	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2037	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2038	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2039	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2040	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2041	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2042	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2043	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2044	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2045	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2046	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2047	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2048	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2049	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2050	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2051	58.6	52.8	58.6	56.7	58.5	56.6	58.4	58.4	56.6	58.5	56.7	58.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6	94.6
2052 2053	58.6	52.8 52.8	58.6 58.6	56.7 56.7	58.5 58.5	56.6 56.6	58.4 58.4	58.4 58.4	56.6 56.6	58.5	56.7 56.7	58.6 58.6	94.6 94.6	94.6 94.6	94.6	94.6	94.6	94.6 94.6	94.6 94.6	94.6	94.6 94.6	94.6	94.6	94.6 94.6
	58.6									58.5		58.6			94.6	94.6	94.6			94.6		94.6	94.6	
2054	58.6	52.8 52.8	58.6	56.7	58.5	56.6	58.4	58.4 58.4	56.6	58.5 58.5	56.7		94.6	94.6 94.6	94.6	94.6 94.6	94.6	94.6	94.6 94.6	94.6	94.6 94.6	94.6	94.6	94.6 94.6
2055 2056	58.6 58.6	52.8 52.8	58.6 58.6	56.7 56.7	58.5 58.5	56.6 56.6	58.4 58.4	58.4 58.4	56.6 56.6		56.7 56.7	58.6 58.6	94.6 94.6	94.6	94.6 94.6									
2056	58.6	52.8 52.8	58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5 58.5	56.7	58.6	94.6	94.6 94.6										
2058	58.6	52.8	58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5	56.7	58.6	94.6	94.0 94.6										
2058	58.6	52.8	58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5	56.7	58.6	94.6	94.0 94.6										
2059	58.6	52.8	58.0 58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5	56.7	58.6	94.6	94.0 94.6										
2000	58.6	52.8	58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5	56.7	58.6	94.6	94.0 94.6	94.0 94.6	94.6	94.0 94.6	94.0 94.6	94.0 94.6	94.0 94.6	94.0 94.6	94.0 94.6	94.6	94.0 94.6
2001	58.6	52.8	58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5	56.7	58.6	94.6	94.0 94.6	94.0 94.6	94.6	94.0 94.6	94.0 94.6	94.0 94.6	94.0 94.6	94.0 94.6	94.6	94.6	94.0 94.6
2062	58.6	52.8 52.8	58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5 58.5	56.7	58.6	94.6	94.6 94.6										
2003	58.6	52.8	58.0 58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5	56.7	58.6	94.6	94.0 94.6										
2065	58.6	52.8	58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5	56.7	58.6	94.6	94.0 94.6										
2065	58.6	52.8	58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5	56.7	58.6	94.6	94.0 94.6										
2000	58.6	52.8	58.6	56.7	58.5	56.6	58.4 58.4	58.4 58.4	56.6	58.5	56.7	58.6	94.6	94.0 94.6										
2007	50.0	52.0	50.0	50.7	50.5	50.0	50.4	50.4	50.0	50.5	50.7	50.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0

Transmission Losses (GWh)

		200000	(0111)										•		2000000	(,									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2018	23.2	21.1	21.2	17.6	16.0	17.4	17.1	17.0	16.0	17.0	19.2	22.8		46.9	46.6	40.8	36.2	39.1	39.1	35.0	33.6	36.3	33.1	37.8	46.7
2019	23.4	21.4	21.4	17.8	16.2	17.6	17.3	17.2	16.2	17.2	19.5	23.1		47.2	46.9	41.3	36.6	39.6	39.6	35.3	34.0	36.7	33.4	38.3	47.0
2020	23.6	21.5	21.6	17.9	16.3	17.8	17.4	17.3	16.3	17.3	19.6	23.2		47.7	47.4	41.6	36.9	39.9	39.8	35.6	34.2	36.9	33.7	38.6	47.5
2021	24.0	21.8	21.9	18.2	16.6	18.0	17.7	17.5	16.5	17.6	19.9	23.6		48.1	47.8	42.2	37.4	40.4	40.4	36.0	34.6	37.4	34.2	39.2	47.9
2022	24.3	22.2	22.2	18.4	16.8	18.2	17.9	17.8	16.7	17.8	20.2	23.9		48.8	48.4	42.9	38.0	41.0	40.9	36.5	35.1	37.9	34.6	39.7	48.5
2023	24.6	22.5	22.5	18.7	17.0	18.5	18.1	18.0	16.9	18.1	20.4	24.2		49.5	49.1	43.5	38.5	41.6	41.5	37.0	35.5	38.4	35.1	40.3	49.2
2024	24.9	22.7	22.8	18.9	17.2	18.7	18.3	18.2	17.1	18.3	20.7	24.5		50.1	49.7	44.0	39.0	42.1	42.0	37.4	35.9	38.8	35.5	40.8	49.8
2025	25.2	23.0	23.0	19.1	17.4	18.9	18.5	18.4	17.3	18.5	20.9	24.8		50.7	50.3	44.5	39.4	42.5	42.4	37.8	36.3	39.3	35.9	41.2	50.4
2026	25.5	23.2	23.3	19.3	17.6	19.1	18.7	18.5	17.5	18.7	21.1	25.1		51.2	50.8	45.0	39.8	43.0	42.8	38.2	36.7	39.6	36.2	41.7	50.9
2027 2028	25.8	23.5	23.6	19.6	17.8	19.3	18.9	18.7	17.7	18.9	21.4	25.4		51.7	51.3	45.6	40.3	43.5	43.3	38.6	37.1	40.1	36.7	42.2	51.4 52.0
2028	26.1 26.3	23.8 24.0	23.8 24.1	19.8 20.0	18.0 18.2	19.5 19.7	19.1 19.3	18.9 19.1	17.9 18.0	19.1 19.3	21.6 21.8	25.7 25.9		52.3 52.8	51.9 52.4	46.1 46.6	40.8 41.2	44.0 44.4	43.8 44.2	39.0 39.4	37.5 37.8	40.5 40.9	37.1 37.5	42.7 43.2	52.0 52.5
2020	26.6	24.3	24.3	20.0	18.4	19.9	19.5	19.1	18.2	19.5	22.1	26.2		53.3	52.9	47.1	41.7	44.9	44.7	39.8	38.2	41.3	37.9	43.6	53.0
2031	26.9	24.5	24.6	20.2	18.6	20.1	19.6	19.5	18.4	19.7	22.3	26.5		53.8	53.4	47.6	42.1	45.4	45.1	40.2	38.6	41.7	38.2	44.1	53.5
2032	27.1	24.7	24.8	20.6	18.7	20.3	19.8	19.6	18.5	19.8	22.5	26.7		54.3	53.9	48.0	42.5	45.8	45.6	40.5	38.9	42.1	38.6	44.5	54.0
2033	27.4	25.0	25.0	20.8	18.9	20.4	20.0	19.8	18.7	20.0	22.7	27.0		54.7	54.3	48.5	43.0	46.2	46.0	40.9	39.3	42.5	38.9	44.9	54.4
2034	27.6	25.2	25.3	21.0	19.1	20.6	20.2	20.0	18.9	20.2	22.9	27.2		55.2	54.8	49.0	43.4	46.7	46.4	41.3	39.6	42.9	39.3	45.4	54.9
2035	27.9	25.4	25.5	21.2	19.3	20.8	20.3	20.1	19.0	20.4	23.1	27.5		55.7	55.3	49.4	43.8	47.1	46.8	41.6	40.0	43.2	39.6	45.8	55.4
2036	28.1	25.6	25.7	21.3	19.4	21.0	20.5	20.3	19.2	20.5	23.3	27.7		56.1	55.7	49.8	44.1	47.5	47.2	41.9	40.3	43.6	40.0	46.2	55.8
2037	28.3	25.9	25.9	21.5	19.6	21.1	20.6	20.4	19.3	20.7	23.5	27.9		56.5	56.1	50.3	44.5	47.9	47.6	42.2	40.6	43.9	40.3	46.6	56.2
2038	28.6	26.1	26.1	21.7	19.7	21.3	20.8	20.6	19.5	20.9	23.7	28.2		57.0	56.6	50.7	44.9	48.2	47.9	42.6	40.9	44.2	40.6	47.0	56.7
2039	28.8	26.3	26.3	21.9	19.9	21.5	21.0	20.7	19.6	21.0	23.9	28.4		57.4	57.0	51.1	45.2	48.6	48.3	42.9	41.2	44.6	40.9	47.4	57.1
2040	29.0	26.5	26.5	22.0	20.0	21.6	21.1	20.9	19.7	21.2	24.1	28.6		57.8	57.4	51.5	45.6	49.0	48.7	43.2	41.5	44.9	41.2	47.7	57.5
2041	29.2	26.7	26.7	22.2	20.2	21.8	21.2	21.0	19.9	21.3	24.2	28.8		58.2	57.8	51.9	45.9	49.3	49.0	43.5	41.8	45.2	41.5	48.1	57.9
2042	29.4	26.8	26.9	22.3	20.3	21.9	21.4	21.2	20.0	21.5	24.4	29.0		58.6	58.1	52.2	46.2	49.7	49.3	43.8	42.0	45.5	41.8	48.4	58.2
2043 2044	29.6 29.8	27.0 27.2	27.1 27.3	22.5 22.6	20.5 20.6	22.1 22.2	21.5 21.7	21.3 21.4	20.1 20.3	21.6 21.8	24.6 24.7	29.2 29.4		58.9 59.3	58.5 58.9	52.6 53.0	46.6 46.9	50.0 50.4	49.7 50.0	44.1 44.4	42.3 42.6	45.8 46.1	42.1 42.4	48.7 49.1	58.6 59.0
2044	30.0	27.2	27.5	22.0	20.0	22.2	21.7	21.4	20.3	21.8	24.7	29.4		59.5 59.7	59.3	53.0 53.4	40.9	50.4 50.7	50.0	44.4 44.6	42.0	46.1	42.4	49.1 49.4	59.0 59.4
2045	30.2	27.4	27.6	22.0	20.9	22.5	21.0	21.0	20.4	22.0	25.1	29.8		60.0	59.6	53.7	47.5	51.0	50.6	44.9	43.1	46.7	42.9	49.7	59.7
2047	30.4	27.7	27.8	23.1	21.0	22.6	22.1	21.7	20.6	22.2	25.2	30.0		60.4	60.0	54.0	47.8	51.4	50.0	45.2	43.4	46.9	43.2	50.1	60.1
2048	30.6	27.9	28.0	23.2	21.1	22.8	22.2	21.9	20.7	22.3	25.4	30.2		60.7	60.3	54.4	48.1	51.7	51.2	45.4	43.6	47.2	43.4	50.4	60.4
2049	30.8	28.1	28.1	23.4	21.3	22.9	22.3	22.1	20.9	22.4	25.5	30.4		61.1	60.7	54.7	48.4	52.0	51.5	45.7	43.9	47.5	43.7	50.7	60.8
2050	31.0	28.2	28.3	23.5	21.4	23.0	22.4	22.2	21.0	22.6	25.7	30.5		61.4	61.0	55.0	48.7	52.3	51.8	46.0	44.1	47.8	43.9	51.0	61.1
2051	31.1	28.4	28.5	23.6	21.5	23.1	22.5	22.3	21.1	22.7	25.8	30.7		61.7	61.3	55.3	49.0	52.6	52.1	46.2	44.3	48.0	44.2	51.3	61.4
2052	31.3	28.5	28.6	23.8	21.6	23.3	22.7	22.4	21.2	22.8	25.9	30.9		62.0	61.6	55.6	49.2	52.8	52.4	46.4	44.6	48.2	44.4	51.6	61.7
2053	31.4	28.7	28.8	23.9	21.7	23.4	22.8	22.5	21.3	22.9	26.1	31.0		62.3	61.9	55.9	49.5	53.1	52.6	46.6	44.8	48.5	44.6	51.8	62.0
2054	31.6	28.8	28.9	24.0	21.8	23.5	22.9	22.6	21.4	23.0	26.2	31.2		62.6	62.2	56.2	49.8	53.4	52.9	46.9	45.0	48.7	44.9	52.1	62.3
2055	31.8	29.0	29.1	24.1	21.9	23.6	23.0	22.7	21.5	23.2	26.3	31.3		63.0	62.5	56.5	50.0	53.7	53.2	47.1	45.2	49.0	45.1	52.4	62.6
2056	31.9	29.1	29.2	24.3	22.1	23.7	23.1	22.8	21.6	23.3	26.5	31.5		63.3	62.8	56.8	50.3	54.0	53.4	47.3	45.5	49.2	45.3	52.7	62.9
2057	32.1	29.3	29.4	24.4	22.2	23.8	23.2	22.9	21.7	23.4	26.6	31.7		63.6	63.1	57.1	50.6	54.2	53.7	47.6	45.7	49.5	45.5	52.9	63.2
2058 2059	32.3 32.4	29.4 29.6	29.5 29.7	24.5 24.6	22.3 22.4	24.0 24.1	23.3 23.4	23.0 23.2	21.8 21.9	23.5 23.6	26.7 26.9	31.8 32.0		63.9 64.2	63.4 63.7	57.4 57.7	50.8 51.1	54.5 54.8	54.0 54.2	47.8 48.0	45.9 46.1	49.7 49.9	45.8 46.0	53.2 53.5	63.5 63.8
2039	32.4	29.0	29.7	24.0	22.4	24.1	23.4	23.2	21.9	23.0	20.9	32.0		64.2	64.0	58.0	51.4	54.8 55.1	54.2	48.0	46.3	49.9 50.2	46.2	53.8	64.1
2000	32.0	29.9	30.0	24.8	22.5	24.2	23.0	23.3	22.0	23.7	27.0	32.2		64.8	64.3	58.3	51.4	55.3	54.8	48.5	46.6	50.2	46.5	53.8 54.0	64.4
2062	32.9	30.0	30.1	25.0	22.7	24.4	23.8	23.5	22.2	24.0	27.3	32.5		65.1	64.6	58.6	51.9	55.6	55.0	48.7	46.8	50.7	46.7	54.3	64.7
2063	33.1	30.2	30.3	25.1	22.8	24.5	23.9	23.6	22.3	24.1	27.4	32.6		65.4	64.9	58.9	52.2	55.9	55.3	49.0	47.0	50.9	46.9	54.6	65.0
2064	33.3	30.3	30.4	25.3	23.0	24.7	24.0	23.7	22.4	24.2	27.6	32.8		65.7	65.2	59.2	52.4	56.2	55.6	49.2	47.2	51.1	47.1	54.9	65.4
2065	33.4	30.5	30.6	25.4	23.1	24.8	24.1	23.8	22.6	24.3	27.7	33.0		66.0	65.5	59.5	52.7	56.5	55.9	49.4	47.4	51.4	47.4	55.1	65.7
2066	33.6	30.6	30.7	25.5	23.2	24.9	24.2	23.9	22.7	24.4	27.8	33.1		66.3	65.8	59.8	52.9	56.7	56.1	49.7	47.7	51.6	47.6	55.4	66.0
2067	33.7	30.8	30.9	25.6	23.3	25.0	24.3	24.0	22.8	24.6	28.0	33.3		66.6	66.1	60.1	53.2	57.0	56.4	49.9	47.9	51.9	47.8	55.7	66.3
-													-												
2013-14	3.2%	3.2%	3.2%	3.2%	3.9%	4.5%	4.5%	4.5%	4.5%	3.3%	3.3%	3.3%		3.1%	3.1%	3.1%	3.1%	3.8%	4.3%	4.3%	4.3%	4.3%	3.2%	3.2%	3.1%
2015-67	2.8%	2.8%	2.8%	2.8%	2.9%	3.7%	3.8%	3.8%	3.5%	3.1%	3.0%	2.9%	L	3.1%	3.1%	3.1%	3.1%	3.8%	4.3%	4.3%	4.3%	4.3%	3.2%	3.2%	3.1%

NLH Energy Requirements (GWh)

	- 07	,	(-	,												,									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	L	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2018	851	776	778	645	569	489	468	465	473	566	661	809	15	560	1549	1357	1203	1081	942	842	809	874	1074	1229	1552
2019	861	785	787	653	575	494	473	470	478	573	668	819	15	570	1559	1374	1217	1093	953	851	818	884	1086	1244	1562
2020	867	791	793	658	579	498	476	473	482	577	673	825	15	587	1575	1384	1227	1101	959	857	823	890	1094	1253	1579
2021	879	802	804	667	588	504	483	479	488	585	683	837	16	501	1589	1405	1245	1117	973	868	834	901	1109	1272	1592
2022	892	814	816	677	596	511	489	485	495	593	693	849	16	522	1610	1426	1263	1133	986	880	846	914	1125	1291	1614
2023	904	825	826	686	604	518	495	491	501	601	702	860	16	546	1634	1445	1280	1148	999	891	856	925	1139	1308	1637
2024	915	834	836	694	611	524	500	496	506	608	710	871	16	566	1654	1463	1296	1162	1010	901	866	936	1153	1324	1657
2025	925	844	846	702	618	529	506	501	511	614	718	880	16	585	1673	1480	1311	1175	1021	910	875	945	1165	1340	1676
2026	934	852	854	709	624	534	510	506	516	620	725	890	17	703	1691	1496	1325	1187	1031	919	883	955	1177	1354	1694
2027	946	863	865	718	632	541	516	512	522	628	734	901	17	720	1708	1515	1342	1202	1044	930	893	966	1191	1371	1711
2028	957	873	875	726	639	547	522	517	528	635	743	911	17	739	1726	1533	1358	1216	1056	940	903	976	1205	1388	1729
2029	966	882	884	733	645	552	527	522	533	641	750	920	17	757	1744	1549	1371	1228	1066	948	911	985	1216	1402	1748
2030	977	891	893	741	652	558	532	527	538	648	758	930	17	773	1760	1566	1387	1241	1077	958	921	995	1229	1417	1763
2031	986	900	902	748	659	563	537	532	543	654	765	939	17	789	1776	1582	1401	1253	1087	967	929	1005	1241	1432	1779
2032	996	908	910	756	665	568	541	536	548	660	772	948	18	805	1792	1598	1415	1265	1097	976	938	1014	1253	1446	1795
2033	1005	917	919	763	671	573	546	541	553	666	780	957	18	821	1807	1613	1428	1277	1107	985	946	1023	1265	1460	1811
2034	1015	926	928	770	677	578	551	546	558	672	787	966	18	837	1823	1629	1442	1290	1117	993	954	1032	1276	1474	1827
2035	1024	934	936	777	683	583	555	550	562	678	794	975	18	852	1838	1644	1455	1301	1127	1002	962	1041	1287	1487	1842
2036	1032	942	944	783	689	588	560	554	567	683	800	983	18	866	1853	1658	1468	1312	1136	1010	970	1049	1298	1500	1856
2037	1040	949	951	790	695	592	564	558	571	689	807	991	18	880	1867	1672	1480	1322	1145	1017	977	1057	1308	1513	1870
2038	1049	957	959	796	700	597	568	562	575	694	814	999	18	895	1881	1686	1492	1333	1154	1025	985	1065	1319	1525	1884
2039	1057	965	967	803	706	602	573	567	580	700	820	1007	19	909	1895	1700	1505	1344	1163	1033	992	1073	1329	1538	1899
2040	1065	972	974	809	711	606	577	571	584	705	826	1015	19	922	1909	1713	1516	1354	1172	1040	999	1081	1339	1550	1912
2041	1073	979	981	814	716	610	580	574	588	709	832	1022	19	935	1921	1725	1527	1364	1180	1047	1006	1088	1348	1561	1925
2042	1080	986	988	820	721	614	584	578	591	714	838	1029	19	948	1934	1738	1538	1373	1188	1054	1012	1096	1357	1572	1937
2043	1088	992	995	826	726	618	588	582	595	719	843	1036		960	1946	1750	1549	1383	1196	1061	1019	1103	1367	1583	1950
2044	1095	999	1001	832	731	622	592	585	599	724	849	1044	19	973	1959	1762	1560	1392	1204	1068	1026	1110	1376	1594	1962
2045	1103	1006	1008	837	736	626	595	589	603	729	855	1051		985	1971	1774	1571	1402	1212	1075	1032	1117	1385	1605	1975
2046	1109	1012	1014	842	740	630	599	592	606	733	860	1057		997	1983	1786	1581	1410	1219	1081	1038	1124	1393	1616	1986
2047	1116	1019	1021	848	745	634	602	596	610	738	866	1064		009	1994	1797	1591	1419	1227	1088	1045	1131	1402	1626	1998
2048	1123	1025	1027	853	750	638	606	599	614	742	871	1071		020	2006	1809	1601	1428	1234	1094	1051	1137	1410	1636	2010
2049	1130	1031	1033	858	754	642	609	603	617	746	876	1077		032	2017	1820	1611	1437	1241	1101	1057	1144	1419	1647	2021
2050	1137	1037	1039	863	759	645	613	606	620	751	881	1083		043	2028	1831	1620	1445	1248	1107	1062	1150	1427	1656	2032
2051	1143	1043	1045	868	763	648	616	609	624	755	886	1089		053	2038	1841	1629	1453	1255	1112	1068	1156	1434	1665	2042
2052	1149	1048	1050	872	767	652	619	612	627	758	890	1095		063	2048	1851	1638	1460	1261	1118	1073	1162	1442	1674	2052
2053	1155	1054	1056	877	771	655	622	615	630	762	895	1101		073	2058	1861	1647	1468	1268	1123	1079	1168	1449	1683	2062
2054	1161	1059	1061	881	775	658	625	618	633	766	900	1106		084	2069	1871	1656	1476	1274	1129	1084	1173	1457	1692	2072
2055	1167	1065	1067	886	779	662	628	621	636	770	904	1112		094	2079	1881	1664	1483	1280	1135	1089	1179	1464	1701	2083
2056	1173	1070	1072	891	783	665	631	624	639	774	909	1118		104	2089	1890	1673	1491	1287	1140	1095	1185	1471	1710	2093
2057	1179	1075	1078	895	787	668	634	627	642	778	914	1124		114	2099	1900	1682	1499	1293	1146	1100	1191	1479	1719	2103
2058	1185	1081	1083	900	791	672	637	630	645	782	918	1129		124	2109	1910	1691	1506	1300	1151	1105	1197	1486	1728 1737	2113
2059	1191	1086	1089	904	795	675	640	632	648	786	923	1135		134	2119	1920	1699	1514	1306	1157	1111	1203	1494		2123
2060	1197	1092	1094	909	799	678	643	635	651	789	927	1141		144	2129	1930	1708 1717	1522 1529	1313	1163	1116	1208	1501	1746	2133
2061	1203	1097	1100	914	803	681	646	638	655	793	932	1147		155	2139	1940			1319	1168	1121	1214	1509	1755	2143
2062	1209	1103	1105	918	807	685	649 652	641	658	797	937	1152		165	2149	1950 1060	1726	1537	1326	1174	1127	1220	1516	1764	2153
2063 2064	1215 1221	1108 1114	1111 1116	923 927	811 815	688 691	652 655	644 647	661 664	801 805	941 946	1158 1164		175 185	2159 2169	1960 1970	1734 1743	1545 1552	1332 1339	1179 1185	1132 1137	1226 1232	1523 1531	1773 1782	2163 2173
2064 2065	1221	1114	1116	927 932	815 819	691 695	659	647 650	667	805 809	946 951	1164 1170		185	2169	1970	1743	1552	1339	1185	1137	1232	1531	1782	2173
2065	1227	1119	1122	932 936	819	695 698	662	653	670	809 813	951 955	1170		205	2180	1980	1752	1560	1345	1190 1196	1143	1238	1538	1800	2184 2194
2066	1233	1125	1127	936 941	823 827	698 701	665	656	670	813	955 960	1175		205 216	2190	2000	1761	1568	1351	1196	1148 1153	1243	1546	1800	2194 2204
2007	1233	1130	1133	541	027	701	005	030	0/3	01/	500	1101	22	10	2200	2000	1770	13/3	1000	1202	1100	1243	1333	1003	2204

APPENDIX B - ESTIMATED SYSTEM LOADS FOR STUDY YEARS

2014

Case	Load Period	Peak Load			Forecast Lo	ading (MW)	1		Estimated	System Generation	Avalon Load	No. of HRD Units On (2 Lines from	
Case	Load Period	Factor	NP	RURAL	NARL	VALE	CBP&P	DUCK	Losses (MW)	(MW)	(MW)	BDE)	as Sync. Cond.
1	Peak Day (Mid January)	1	1269.6	93.2	24.6	58.2	18.1	5.5	45.5	1514.7	838.2	3	No
2	Peak Night (Mid January)	0.7	888.7	65.2	24.6	58.2	18.1	5.5	32.9	1093.2	611.6	2	No
3	Peak Day (Early May)	0.63	799.8	58.7	24.6	58.2	18.1	5.5	29.9	994.8	558.7	1	Yes
4	Peak Night (Early May)	0.38	482.4	35.4	24.6	58.2	18.1	5.5	19.4	643.6	369.9	0	Yes
5	Peak Day (Late July)	0.47	596.7	43.8	24.6	58.2	18.1	5.5	32.1	779.0	437.9	0	Yes
6	Peak Night (Late July)	0.26	330.1	24.2	24.6	58.2	18.1	5.5	19.8	480.5	279.2	0	Yes
7	Peak Day (Mid November)	0.75	952.2	69.9	24.6	58.2	18.1	5.5	35.0	1163.4	649.4	2	No
8	Peak Night (Mid November)	0.48	609.4	44.7	24.6	58.2	18.1	5.5	23.6	784.1	445.4	0	Yes

2020

Case	Load Period	Peak Load			Forecast Lo	ading (MW)			Estimated	System Generation	Avalon Load	No. of HRD Units On (3rd Ckt from	HRD Unit 3 as Sync.
		Factor	NP	RURAL	NARL	VALE	CBP&P	DUCK	Losses (MW)	(MW)	(MW)	BDE)	Cond.
1	Peak Day (Mid January)	1	1329.0	89.0	29.0	74.3	18.1	0.0	47.7	1587.1	894.1	3	No
2	Peak Night (Mid January)	0.7	930.3	62.3	29.0	74.3	18.1	0.0	34.5	1148.5	656.8	2	No
3	Peak Day (Early May)	0.63	837.3	56.1	29.0	74.3	18.1	0.0	31.5	1046.2	601.5	1	Yes
4	Peak Night (Early May)	0.38	505.0	33.8	29.0	74.3	18.1	0.0	20.5	680.7	403.8	0	Yes
5	Peak Day (Late July)	0.47	624.6	41.8	29.0	74.3	18.1	0.0	33.9	821.7	475.0	0	Yes
6	Peak Night (Late July)	0.26	345.5	23.1	29.0	74.3	18.1	0.0	21.1	511.1	308.9	0	Yes
7	Peak Day (Mid November)	0.75	996.8	66.8	29.0	74.3	18.1	0.0	36.7	1221.6	696.4	3	No
8	Peak Night (Mid November)	0.48	637.9	42.7	29.0	74.3	18.1	0.0	24.9	826.9	482.9	0	Yes

2030

Case	Load Period	Peak Load			Forecast Lo	ading (MW)			Estimated	System Generation	Avalon Load	No. of HRD Units On (3rd Ckt from		
		Factor	NP	RURAL	NARL	VALE	CBP&P	DUCK	Losses (MW)	(MW)	(MW)	BDE)	Cond.	
1	Peak Day (Mid January)	1	1504.0	95.3	29.0	74.3	18.1	0.0	53.3	1774.0	998.2	3	No	
2	Peak Night (Mid January)	0.7	1052.8	66.7	29.0	74.3	18.1	0.0	38.5	1279.3	729.7	3	No	
3	Peak Day (Early May)	0.63	947.5	60.0	29.0	74.3	18.1	0.0	35.0	1163.9	667.1	2	Yes	Note 3
4	Peak Night (Early May)	0.38	571.5	36.2	29.0	74.3	18.1	0.0	22.6	751.7	443.4	0	Yes	
5	Peak Day (Late July)	0.47	706.9	44.8	29.0	74.3	18.1	0.0	37.5	910.6	523.9	0	Yes	
6	Peak Night (Late July)	0.26	391.0	24.8	29.0	74.3	18.1	0.0	23.1	560.3	336.0	0	Yes	
7	Peak Day (Mid November)	0.75	1128.0	71.5	29.0	74.3	18.1	0.0	40.9	1361.8	774.5	3	No	
8	Peak Night (Mid November)	0.48	721.9	45.7	29.0	74.3	18.1	0.0	27.6	916.6	532.8	0	Yes	

2035

Case	Load Period	Peak Load			Forecast Lo	ading (MW)		Estimated	System Generation	Avalon Load	No. of HRD Units On (3rd Ckt from	HRD Unit 3 as Sync.	
Case	Load Penod	Factor	NP	RURAL	NARL	VALE	CBP&P	DUCK	Losses (MW)	(MW)	(MW)	BDE)	Cond.	
1	Peak Day (Mid January)	1	1578.0	98.3	29.0	74.3	18.1	0.0	55.7	1853.4	1042.2	3	No	
2	Peak Night (Mid January)	0.7	1104.6	68.8	29.0	74.3	18.1	0.0	40.1	1334.9	760.5	3	No	
3	Peak Day (Early May)	0.63	994.1	61.9	29.0	74.3	18.1	0.0	36.5	1213.9	694.8	3	No	Note 3
4	Peak Night (Early May)	0.38	599.6	37.4	29.0	74.3	18.1	0.0	23.5	781.9	460.1	0	Yes	
5	Peak Day (Late July)	0.47	741.7	46.2	29.0	74.3	18.1	0.0	39.1	948.3	544.6	1	Yes	
6	Peak Night (Late July)	0.26	410.3	25.6	29.0	74.3	18.1	0.0	24.0	581.2	347.4	0	Yes	
7	Peak Day (Mid November)	0.75	1183.5	73.7	29.0	74.3	18.1	0.0	42.7	1421.3	807.5	3	No	
8	Peak Night (Mid November)	0.48	757.4	47.2	29.0	74.3	18.1	0.0	28.7	954.7	554.0	1	Yes	

Notes:

1. Forecast provided by P. Stratton "NLH Island Demand & Energy Requirements 2018 to 2067" dated 02-25-2011, same as provided to J. Barnard

2. Avalon Load assumed at 59.5% of Total NP Load

3. New CCT available as backup

APPENDIX C - DYNAMIC MODEL SHEETS FOR WIND TURBINES MODELED

Generic Wind Generator Model Data Sheets WT3G1 PSS[®]E 32.0.5 PSS[®]E Model Library

17.4 WT3G1

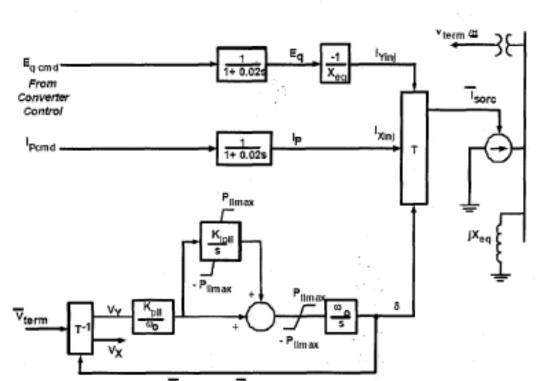
Doubly-Fed Induction Generator (Type 3)

This model is located at system bus	#	IBUS,
Machine identifier	#	ID,
This model uses CONs starting with	#	J,
and STATEs starting with	#	K,
and VARs starting with	#	L,
and ICON	#	м.

CONs	#	Value	Description
J		0.8	Xeq, Equivalent reactance for current injection (pu)
J+1		30	Kpll, PLL first integrator gain
J+2	1	D	Kipli, PLL second integrator gain
J+3		0.1	PIImax, PLL maximum limit
J+4		3.0	Prated, Turbine MW rating

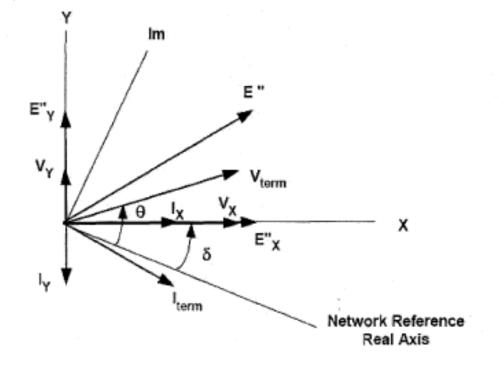
STATEs	#	Description	
к		Converter lag for Ipcmd	
K+1		Converter lag for Eqcmd	-
K+2		PLL first integrator	
K+3		PLL second integrator	

VARs	#	Description
L		V _x , Real component of Vterm in generator ref. frame
L+1		Vy, Imaginary component of Vterm in generator ref. frame
L+2		I _{xinj} , Active component of the injected current
L+3		lyinj, Reactive component of the injected current

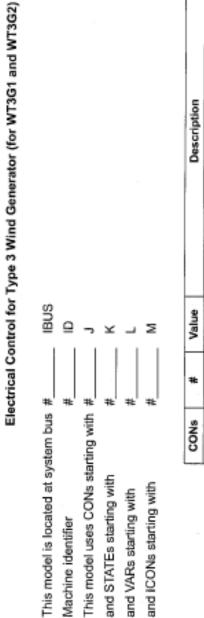

ICON	ø	Description
M	9	Number of lumped wind turbines

IBUS, 'WT3G1', ID, ICON(M), CON(J) to CON(J+4) /

Page 47


PSS[®]E 32.0.5 PSS[®]E Model Library

Generic Wind Generator Model Data Sheets WT3G1



Notes: 1. Vterm and I sorc are complex values on network reference frame.

3. Xeq = Imaginary (ZSORCE)

ť.

-				
	CONS	*	Value	Description
	٦		0.15	T _{fv} . Filter time constant in voltage r
	1+1		18	Kpw Proportional gain in voltage re
	J+2		S	K _N , Integrator gain in voltage regu
	J+3		0	X _o . Line drop compensation reacta
	4+L		0.05	TFP, Filter time constant in torque r
	J+5		3.0	Kpp. Proportional gain in torque rei
	J+6		0.0	KIP. Integrator gain in torque regula
	J+7		1.12	P _{MX} , Max limit in torque regulator
	J+8		<u>0</u>	P _{MN} . Min limit in torque regulator (
	J+9		0.296	0-29 (b) QMX. Max limit in voltage regulator
	J+10		-0436	-0.4.36 QMN. Min limit in voltage regulator
	J+11		1.10	IPMAX, Max active current limit
	J+12		0.05	0.05 TRV. Voltage sensor time constant

gulator (pu)

ator (pu)

n n

(nd) (nd)

Generic Wind Electrical Model Data Sheets WT3E1

> regulator (sec) sgulator (pu)

ilator (pu) ince (pu) regulator PSS[®]E 32.0.5 *PSS[®]E* Model Library

18.3 WT3E1

PSS[®]E 32.0.5 PSS[®]E Model Library ľ

Generic Wind Electrical Model Data Sheets WT3E1

CONs	#	Value	Description
J+13		0.45	RP _{MX} , Max power order derivative
J+14		-0.45	RP _{MN} , Min power order derivative
J+15		5.0	T_Powen Power filter time constant
J+16		0.05	K _{gi} , MVAR/Voltage gain
J+17		0.9	V _{MINCL} , Min voltage limit
J+18		1.2	V _{MAXCL} , Max voltage limit
J+19		40.0	Kqv, Voltage/MVAR gain
J+20		-0.5	XIQ _{min}
J+21		0.4	XIQmax
J+22	_	0.05	T _w Lag time constant in WindVar controller
J+23		0.05	Tp, Pelec filter in fast PF controller
J+24		1.0	Fn, A portion of online wind turbines
J+25		0.69	ωP _{min} , Shaft speed at P _{min} (pu)
J+26		0.78	ωP ₂₀ , Shaft speed at 20% rated power (pu)
J+27	-	0.98	ωP ₄₀ , Shaft speed at 40% rated power (pu)
J+28		1.12	ωP ₆₀ , Shaft speed at 60% rated power (pu)
J+29		0.74	$P_{min},$ Minimum power for operating at ϖP_{100} speed (pu)
J+30		1.2	ωP100, Shaft speed at 100% rated power (pu)

· · · ·	STATEs	đ	Description
이 같은 것	K	1	Filter in voltage regulator
	K+1	5.	Integrator in voltage regulator
	K+2		Filter in torque regulator
	K+3		Integrator in torque regulator
	K+4		Voltage sensor
	K+5		Power filter
	K+6		MVAR/Vref integrator
	K+7		Verror/internal machine voltage integrator
	K+8		Lag of the WindVar controller
	K+9		Input filter of Pelec for PF fast controller

VARs	#	Description	
L		Remote bus ref voltage	

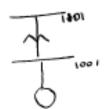
Siemens Energy, Inc., Power Technologies International

1.11

Generic Wind Electrical Model Data Sheets WT3E1 PSS[®]E 32.0.5 PSS[®]E Model Library

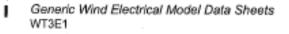
- 1 ³

VARs	#	Description	
L+1		MVAR order from MVAR emulator	
L+2		Q reference if PFAFLG=0 & VARFLG=0	
L+3		PF angle reference if PFAFLG=1	
L+4		Storage of MW for computation of compensated voltage	
L+5		Storage of MVAR for computation of compensated voltage	
L+6		Storage of MVA for computation of compensated voltage	

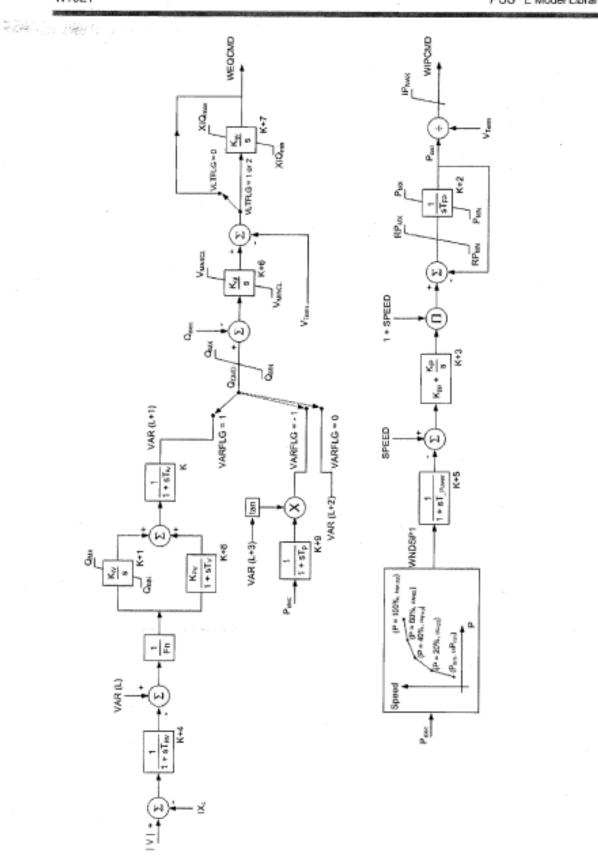

PSS[®]E 32.0.5 PSS[®]E Model Library

Generic Wind Electrical Model Data Sheets WT3E1

ICONs	#	Description
М	0	Remote bus # for voltage control; 0 for local voltage control
		VARFLG:
M+1	1	Constant Q control Use Wind Plant reactive power control Constant power factor control
M+2 ¹	I	VLTFLG: 0 Bypass terminal voltage control 1 Eqcmd limits are calculated as VTerm + XIQmin and
		VTerm + XIQmax, i.e., limits are functions of terminal voltage 2 Eqcmd limits are equal to XIQmin and XIQ max
M+3	1001	From bus of the interconnection transformer
M+4	1101	To bus of the interconnection transformer
M+5	1	Interconnection transformer ID


¹ WT3E1 model can be used with WT3G1 as well as WT3G2 models. When used with WT3G1 model, it is recommended that ICON(M+2) be set to 1; and when used with WT3G2 model, the ICON(M+2) be set to 2.

IBUS, 'WT3E1', ID, ICON(M) to ICON(M+5), CON(J) to CON(J+30) /



ť.

Page 52

PSS[®]E 32.0.5 PSS[®]E Model Library

PSS [®] E 32.0.5	Generic Wind Mechanical Model Data Sheets
PSS [®] E Model Library	WT3T1

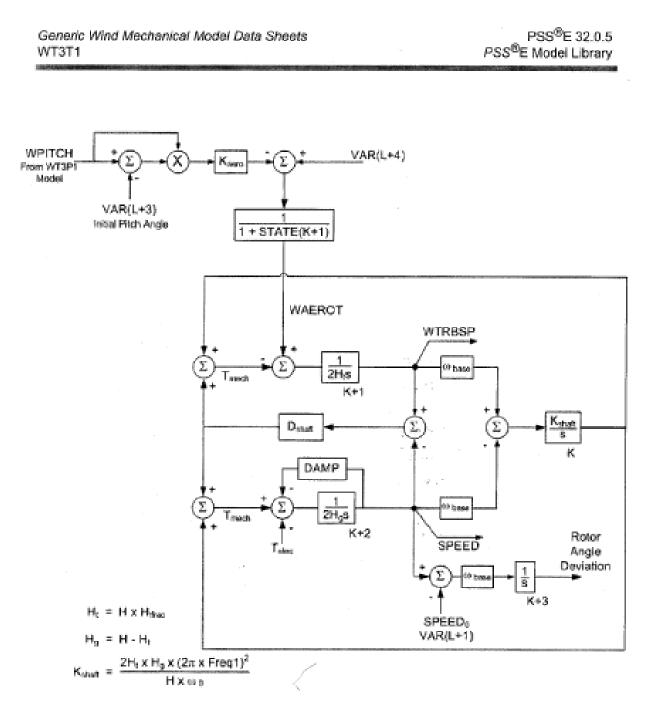
19.3 WT3T1

Mechanical System Model for Type 3 Wind Generator (for WT3G1 and WT3G2)

This model is located at system bus	#	IBUS,
Machine identifier	#	ID,
This model uses CONs starting with	#	J,
and STATEs starting with	#	К,
and VARs starting with	#	L.

In blkmdl, this model requires one reserved ICON.

CONs	#	Value	Description
J		0.44	VW, Initial wind, pu of rated wind speed
J+1		4.95	H, Total inertia constant, sec
J+2		0	DAMP, Machine damping factor, pu P/pu speed
J+3		0.007	K _{aero} , Aerodynamic gain factor
J+4		21.98	Theta2, Blade pitch at twice rated wind speed, deg.
J+5		0.875	H _{ttrac} , Turbine inertia fraction (Hturb/H) ¹
J+6		1.B	Freq1, First shaft torsional resonant frequency, Hz
J+7		1.5	D _{shaft} , Shaft damping factor (pu)


¹ To simulate one-mass mechanical system, set H_{tfrac} = 0. To simulate two-mass mechanical system, set H_{tfrac} as 0 < H_{tfrac} < 1.</p>

STATEs	#	Description
K		Shaft twist angle, rad.
K+1		Turbine rotor speed deviation, pu
K+2		Generator speed deviation, pu
K+3		Generator rotor angle deviation, pu

VARs	#	3 Description
L		Paero on the rotor blade side, pu
L+1		Initial rotor slip
L+2		Initial internal angle
L+3		Initial pitch angle
L+4		Paero initial

IBUS, 'WT3T1', ID, CON(J) to CON (J+7) /

Ľ

PSS [®] E 32.0.5	Generic Wind Pitch Control Model Data Sheets
PSS [®] E Model Library	WT3P1

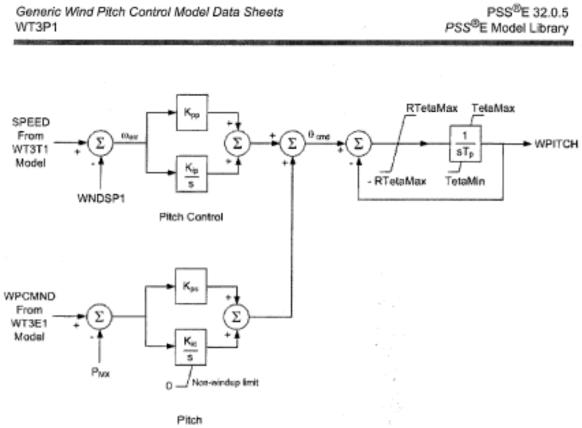
20.2 WT3P1

Pitch Control Model for Type 3 Wind Generator (for WT3G1 and WT3G2)

This model is located at system bus	#	IBUS,
Machine identifier	#	ID,
This model uses CONs starting with	#	J,
and STATEs starting with	#	K.

In blkmdl, this model requires one reserved ICON.

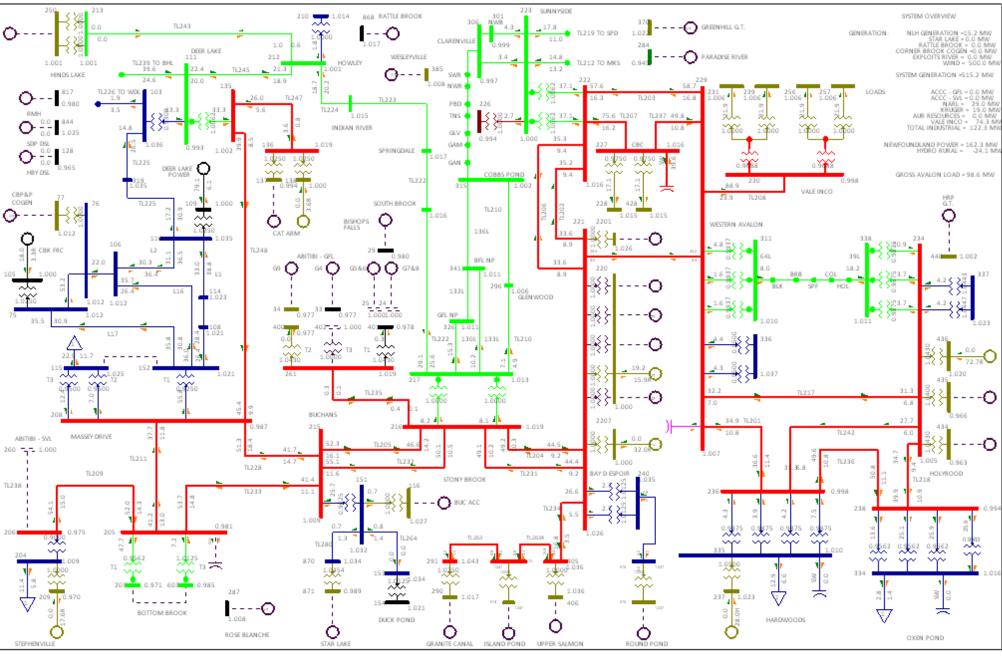
J J+1	0.3	T _p , Blade response time constant
J+1		P
	150	Kpp, Proportional gain of PI regulator (pu)
J+2	25	Kip, Integrator gain of PI regulator (pu)
J+3	3	Kpc, Proportional gain of the compensator (pu)
J+4	30	Kic, Integrator gain of the compensator (pu)
J+5	0	TetaMin, Lower pitch angle limit (degrees)
J+6	27	TetaMax, Upper pitch angle limit (degrees)
J+7	10	RTetaMax, Upper pitch angle rate limit (degrees/sec)
J+8	۱	P _{MX} , Power reference, pu on MBASE


Note: When a WT operates with a partial output, the DSTATE(K+2) may show INITIAL CONDITION SUSPECT. In this case no actions are baseded.

STATEs	#	Description	
к		Output lag	
K+1		Pitch control	
K+2		Pitch compensation	

IBUS, "WT3P1', ID, CON(J) to CON (J+8) /

 \mathbf{r}'

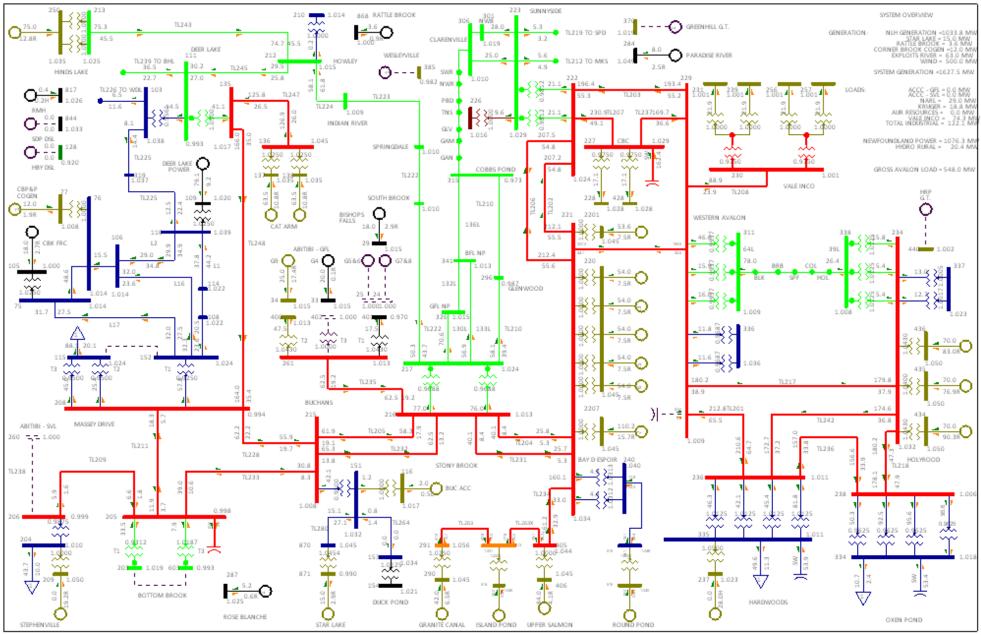

Page 56

Compensation

APPENDIX D - GRAPHICAL LOAD FLOW RESULTS 2020 EXTREME LIGHT LOAD 500 MW WIND GENERATION

Page 60

2020 EXTREME LIGHT LOAD BASE CASE - 100% WIND PENETRATION


SUN, JUN 03 2012 11-38

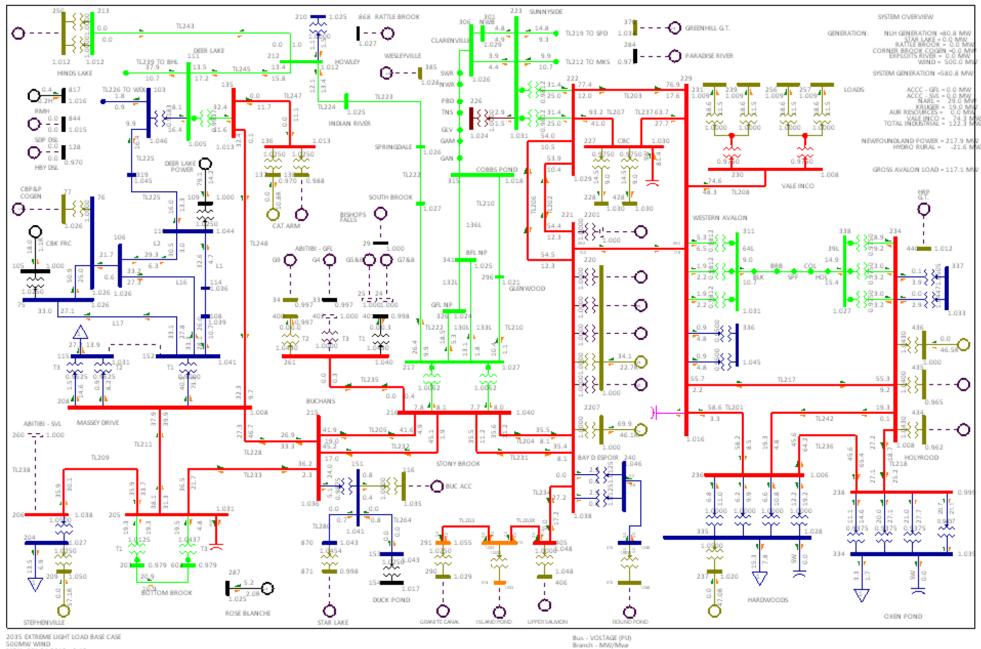
Bus - VOLTAGE (PU) Branch - MVA/% OF RATE C Equipment - MW/Mwar

2020 Extreme Light Load Base Case 500MW wind integration (81% Wind Penetration)

Proposed Locations of 25MW Wind Farms - Isolated Island Case Western / GNP Central Western Avalon Eastern Avalon Burin Peninsula **Heart's Content** Peter's Barren Bear Cove റ Springdale Sunnyside **Bay Roberts** Cobb's Pond Kelligrews Θ Stephenville Massey Drive Buchans St. Lawrence 67 Bus - VOLTAGE (kV/PU) Branch - MW/Mvar Equipment - MW/Mvar Total Wind Generation = 500.0 MW Goulds Doyles 2020 EXTREME LIGHT LOAD BASE CASE - 100% WIND PENETRATION 100.0%RATEC ₩⁵⁰28%65⁰28%900<=16.000<=25.000 <=69.000<=<u>138.000<=230.000</u>>230.000 SUN, JUN 03 2012 11:47

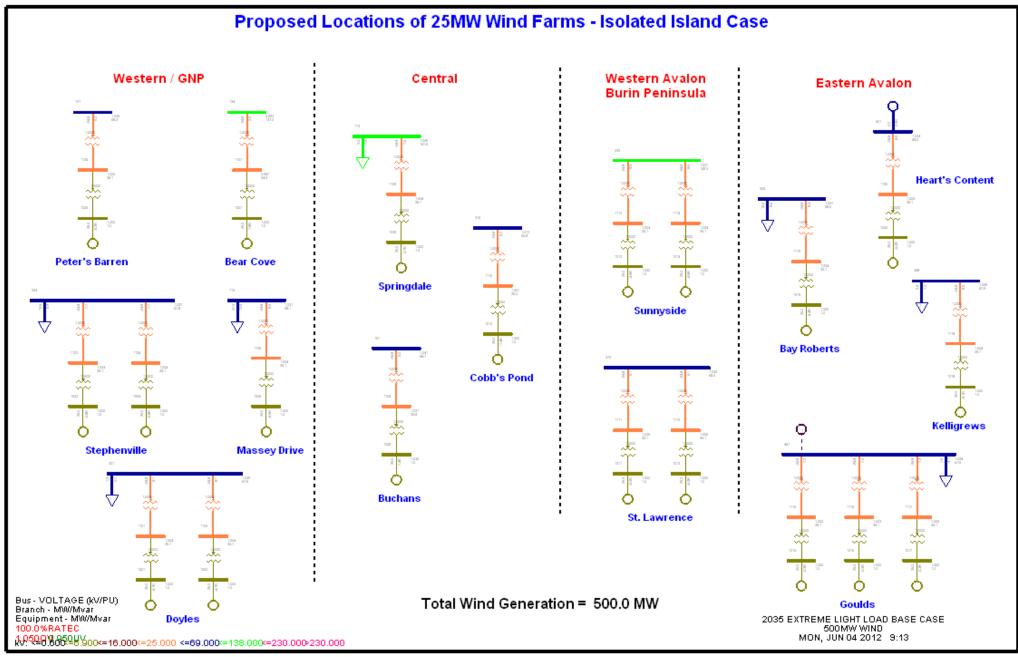
APPENDIX E - GRAPHICAL LOAD FLOW RESULTS 2020 PEAK LOAD 500 MW WIND GENERATION

2020 PEAK BASE CASE - 500MW WIND 31% WIND PENETRATION - MINIMIZE THERMAL GENERATION FRI, MAY 04 2012 15:32

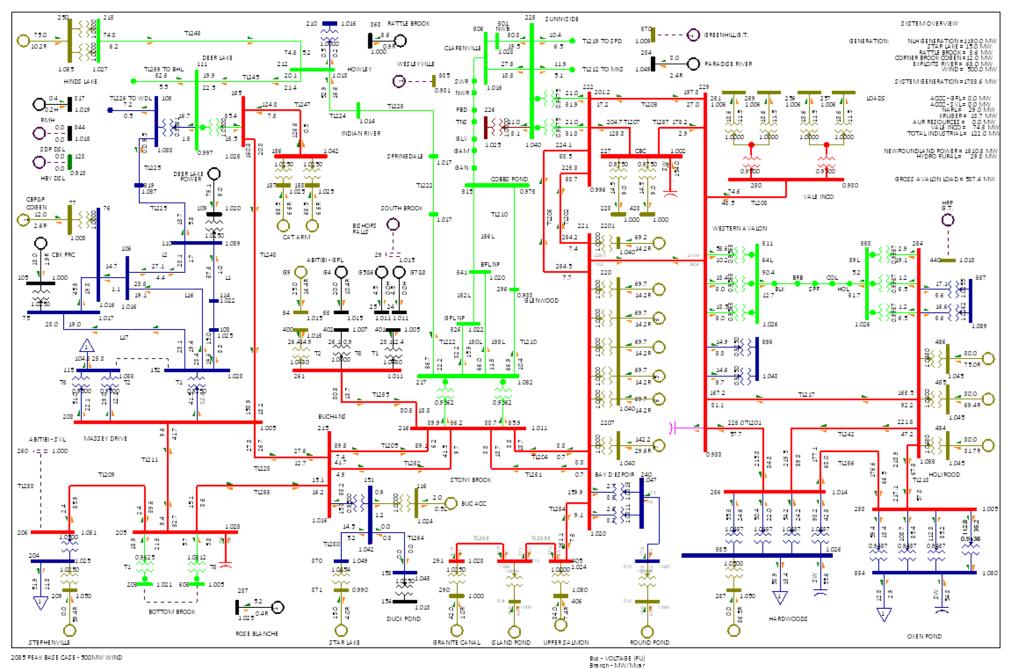

Bus - VOLTAGE (PU) Branch - MVA/% OF RATE C Equipment - MW/Mwar

2020 Peak Load Base Case 500MW wind integration (27% Wind Penetration)

Proposed Locations of 25MW Wind Farms - Isolated Island Case Western / GNP Western Avalon Central Eastern Avalon Burin Peninsula Heart's Content Peter's Barren Bear Cove ſ Springdale Sunnyside **Bay Roberts** Cobb's Pond \circ Kelligrews Θ Stephenville **Massey Drive** \sim Buchans St. Lawrence Bus - VOLTAGE (kV/PU) Branch - MVA/% OF RATE C Equipment - MW/Mvar Total Wind Generation = 500.0 MW Goulds 2020 PEAK BASE CASE - 500MW WIND 31% WIND PENETRATION - MINIMIZE THERMAL GENERATION FRI, MAY 04 2012 15:34 Doyles 100.0%RATEC 19508/9508/00 <=16.000 <=25.000<=69.000 <=138.000 <=230.000 >230.000


2020 Peak Load Base Case 500MW wind integration (27% Wind Penetration)

APPENDIX F - GRAPHICAL LOAD FLOW RESULTS 2035 EXTREME LIGHT LOAD 500 MW WIND GENERATION


SCOMW WIND

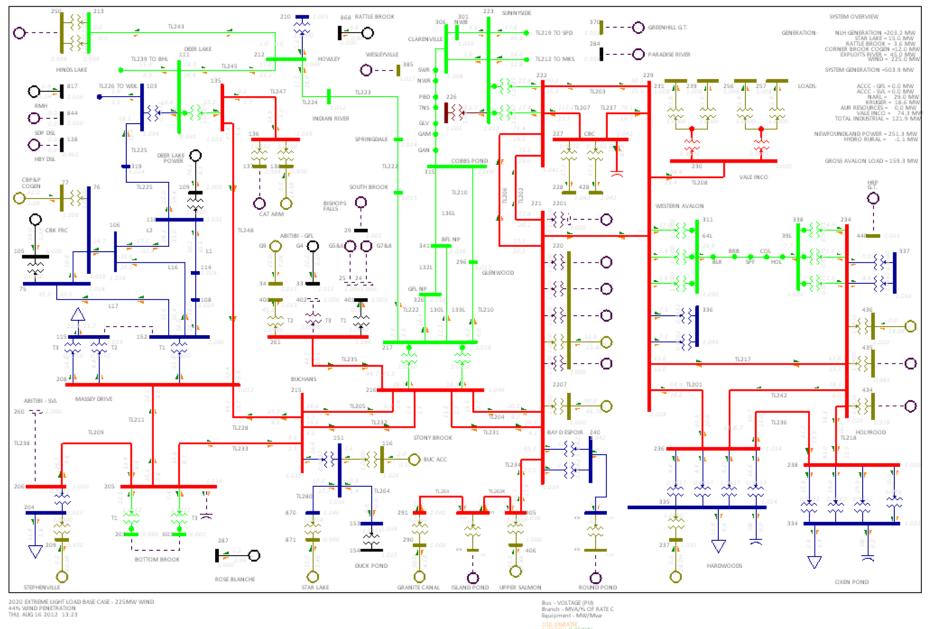
2035 Extreme Light Load 500MW Wind (71% Wind Penetration)

2035 Extreme Light Load 500MW Wind (71% Wind Penetration)

APPENDIX G - GRAPHICAL LOAD FLOW RESULTS 2035 PEAK LOAD 500 MW WIND GENERATION

2035 Peak Load 500MW Wind (25% Wind Penetration)

Proposed Locations of 25MW Wind Farms - Isolated Island Case Western / GNP Central Western Avalon Eastern Avalon **Burin Peninsula Heart's Content** Peter's Barren Bear Cove Springdale Sunnyside **Bay Roberts** Cobb's Pond \circ Kelligrews Stephenville Massey Drive Buchans St. Lawrence Bus - VOLTAGE (kV/PU) Branch - MW/Mvar Equipment - MW/Mvar Total Wind Generation = 500.0 MW Goulds 2035 PEAK BASE CASE - 500MW WIND Doyles

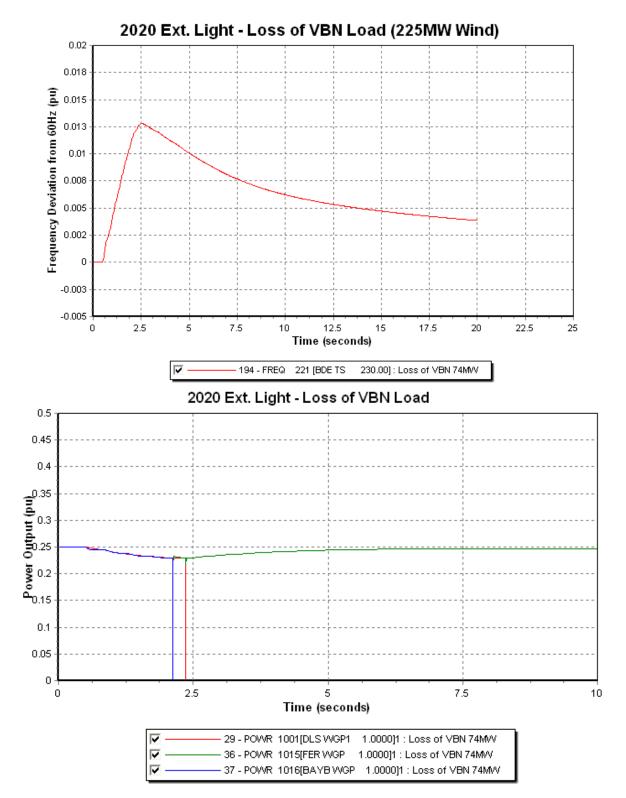

MON, JUN 04 2012 10:00

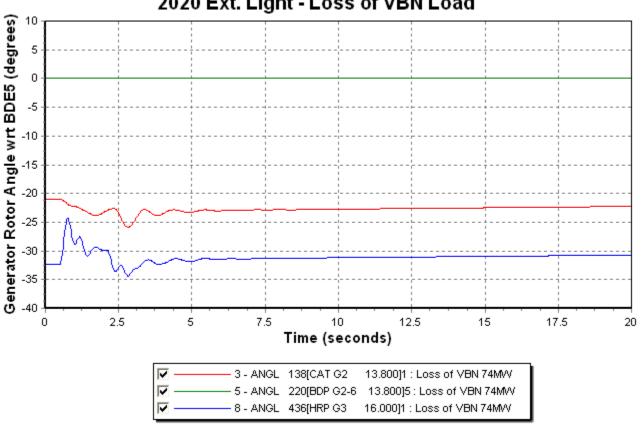
2035 Peak Load 500MW Wind (25% Wind Penetration)

100.0%RATEC

₩²2=0.600=0.900×=16.000×=25.000 **<=69.000×**=138.000×=230.000×230.000

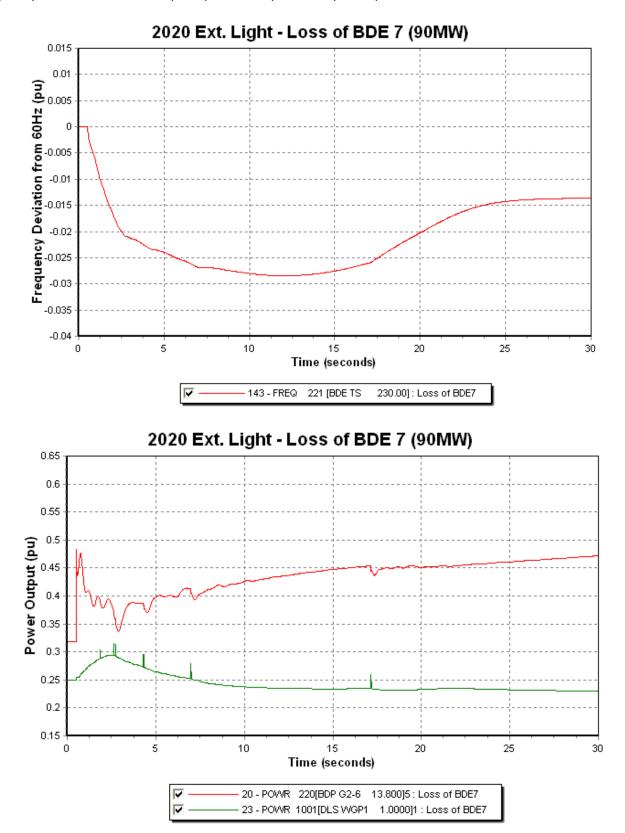
APPENDIX H - STABILITY RESULTS 2020 EXTREME LIGHT LOAD 225 MW WIND GENERATION

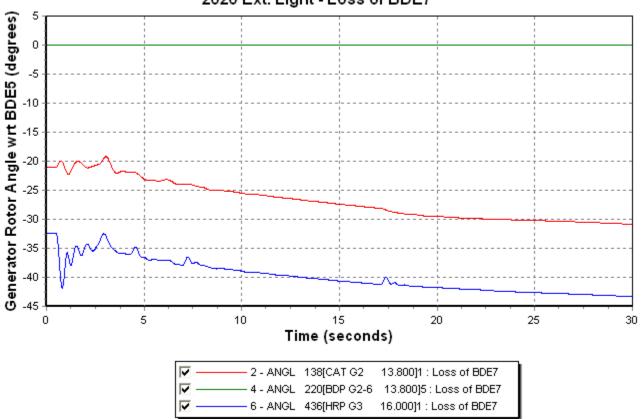



100.0984.05 1.0500Y 0.950UV KY: +6.900 +16.000 +25.000 +46.000 +69.000 +138.000 +230.000 >230.000

2020 Extreme Light Load – 225MW Wind – Generation Dispatch Prior to Dynamic Simulations

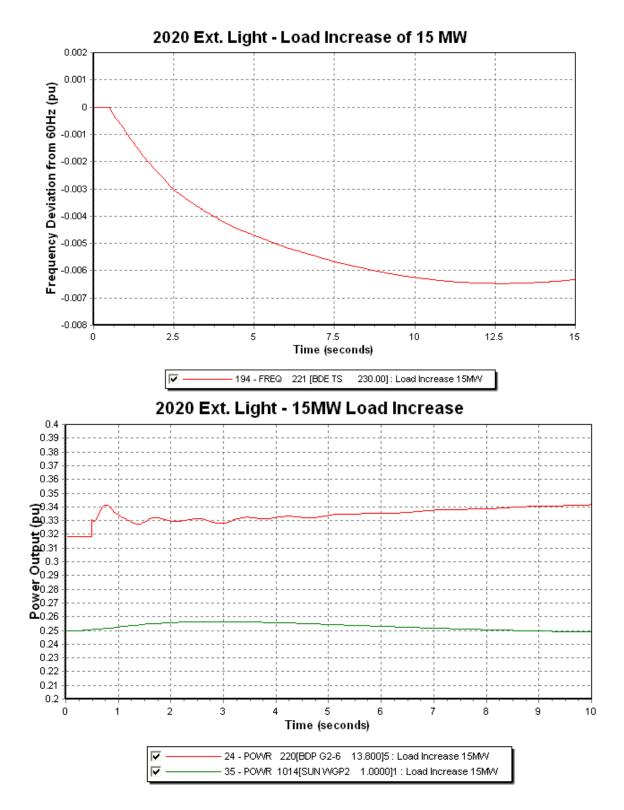
Case 1 – Loss of 74.3MW load at VBN

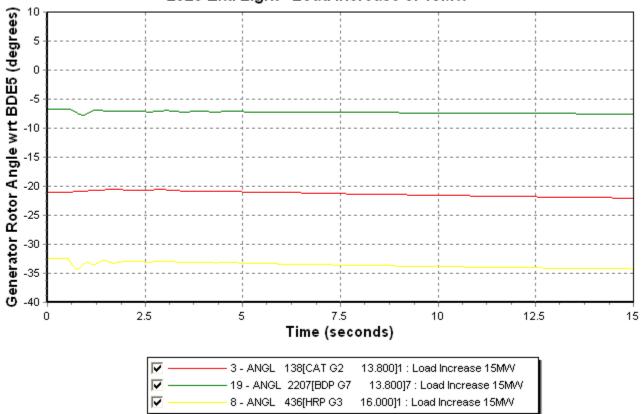

This causes an over frequency condition above 61.2 Hz. All wind turbines over frequency protection is engaged at 61.2Hz with time delay of 0.2seconds, thus causing loss of 225MW of generation from the island. This is considered unacceptable, thus there was a reduction in over frequency settings for several wind turbines to prevent mass tripping of all units at the same time. The following plots show system frequency response and power output from 3 wind turbine plants (two of which trip at 60.6 and 60.75 Hz respectively).



2020 Ext. Light - Loss of VBN Load

For this contingency, the system is stable and all wind turbines remain connected to the grid. Frequency decline reaches 58.3 Hz and is arrested by operation of 44MW of load shedding. The plots below outline the system frequency and wind turbine / Bay d'Espoir Unit 5 power output responses.

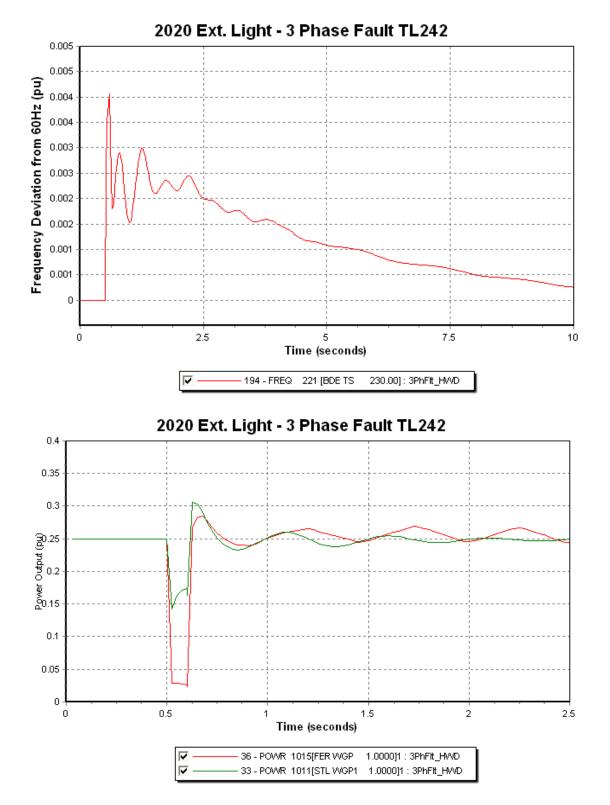


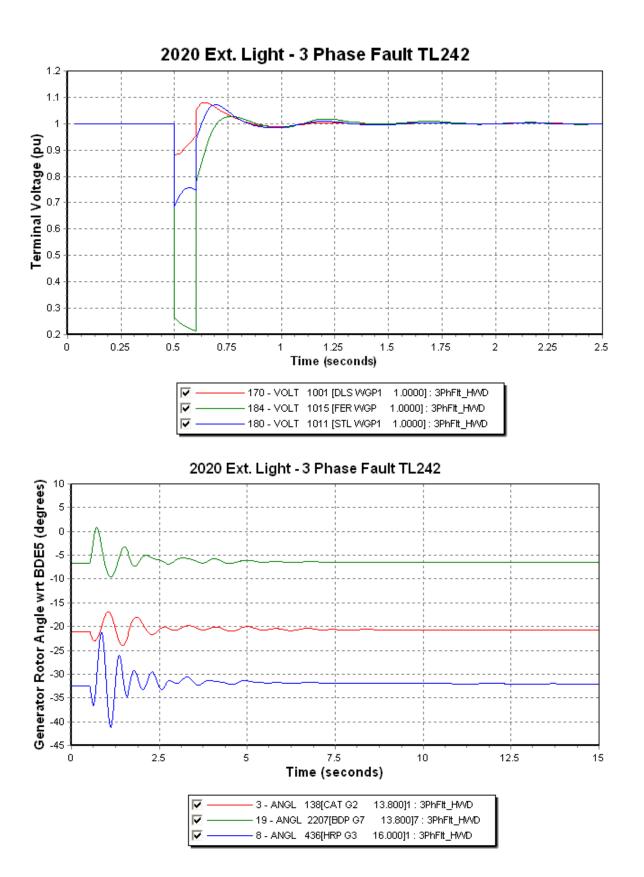


2020 Ext. Light - Loss of BDE7

Case 3 – Sudden Load Increase of 15 MW

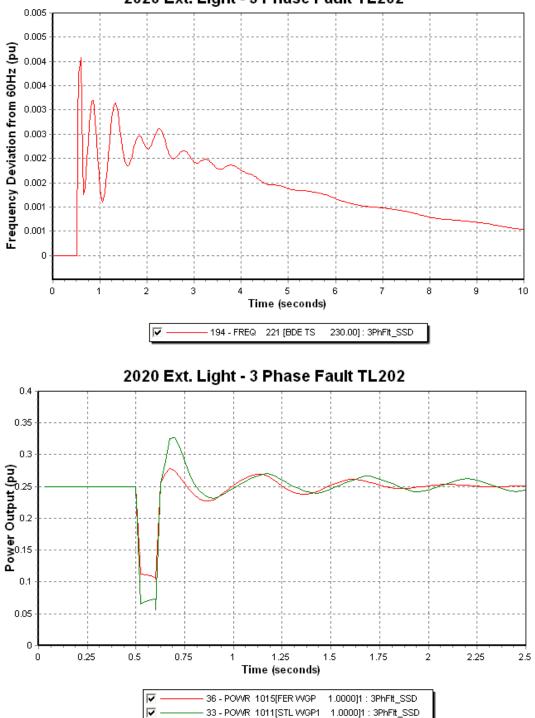
For this event, system frequency reaches a minimum level 59.6 Hz, which is slightly above the first stage under frequency load shedding stage of 59.5 Hz. This is the pre-defined limit of frequency decline for this type of event. The plots below outline the system frequency and a wind turbine / Bay d'Espoir Unit 7 power output responses.

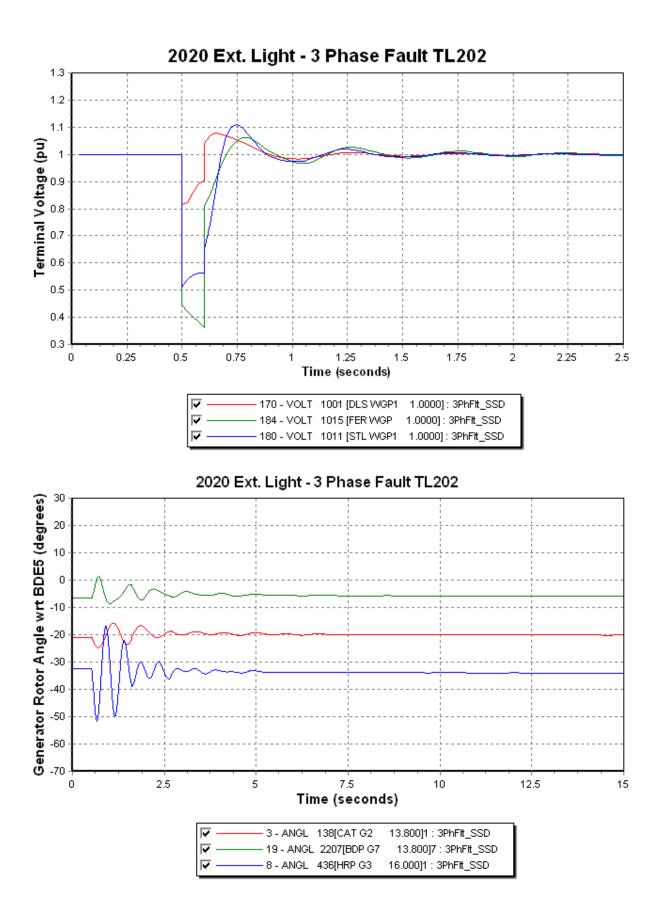




2020 Ext. Light - Load Increase of 15MW

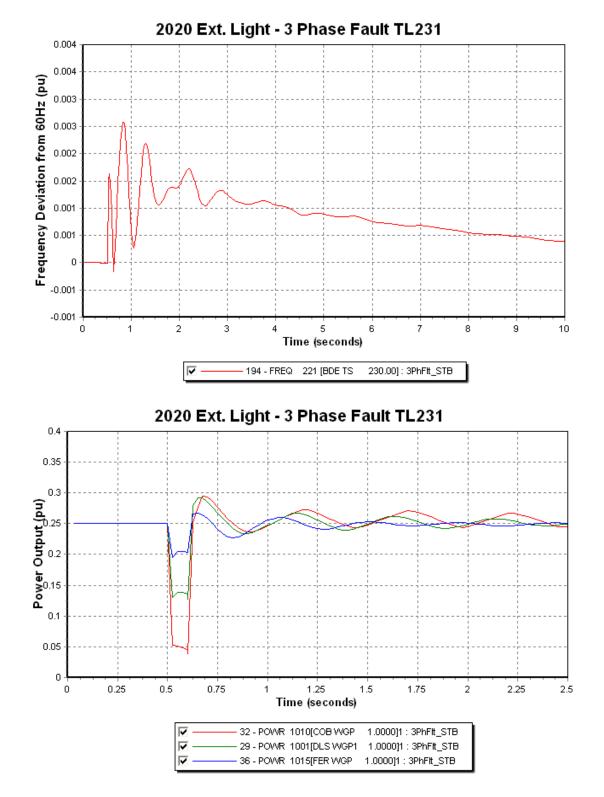
Case 4 – 3 Phase Fault at HWD (6 cycles – Trip TL242)

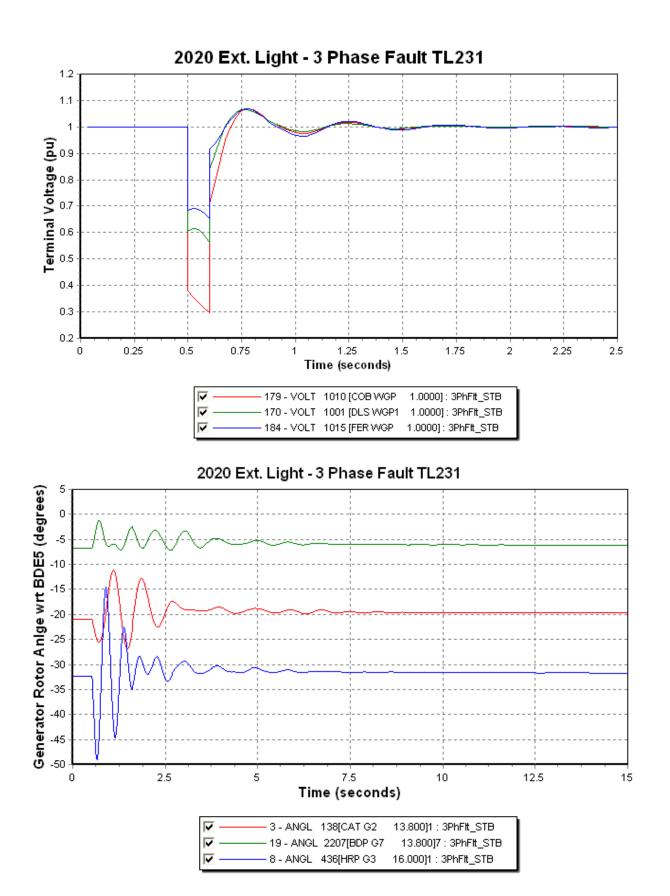

For this contingency a three phase fault has been applied on TL242 near Hardwoods terminal station for 6 cycles, followed by the tripping of TL242 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.



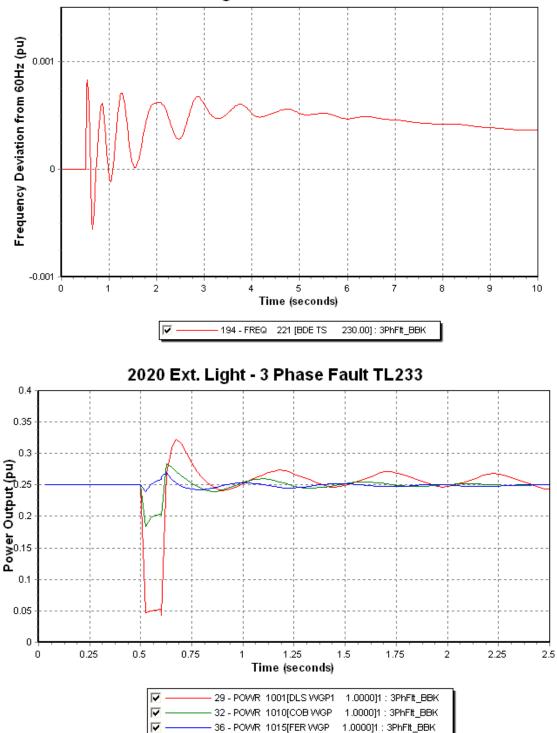
Case 5 – 3 Phase Fault at SSD (6 cycles – Trip TL202)

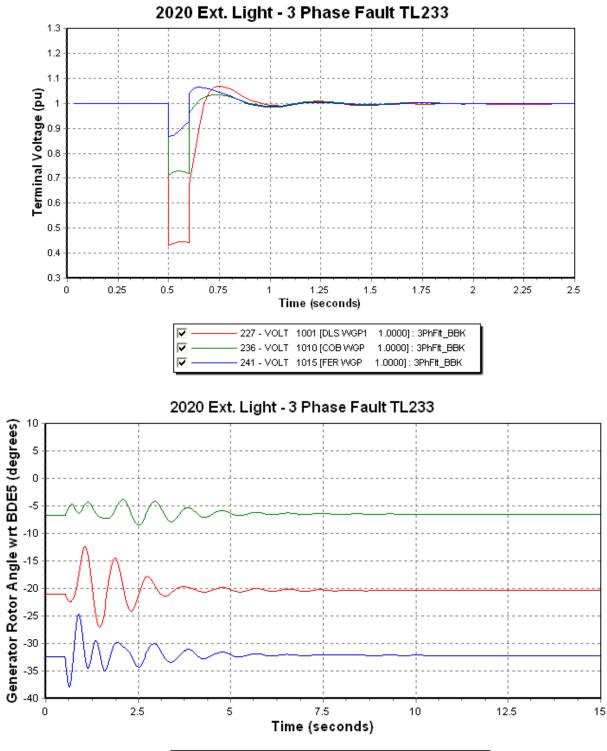
For this contingency a three phase fault has been applied on TL202 near Sunnyside terminal station for 6 cycles, followed by the tripping of TL202 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.




2020 Ext. Light - 3 Phase Fault TL202

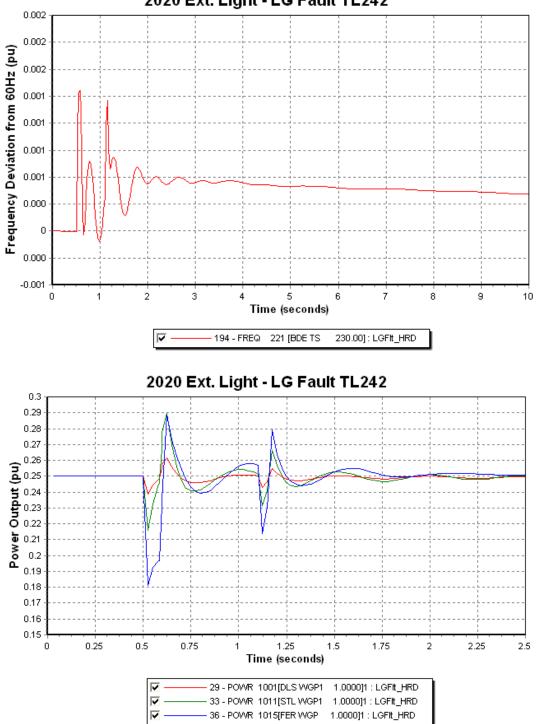
Case 6 – 3 Phase Fault at STB (6 cycles – Trip TL231)


For this contingency a three phase fault has been applied on TL231 near Stony Brook terminal station for 6 cycles, followed by the tripping of TL231 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.



Case 7 – 3 Phase Fault at BBK (6 cycles – Trip TL233)

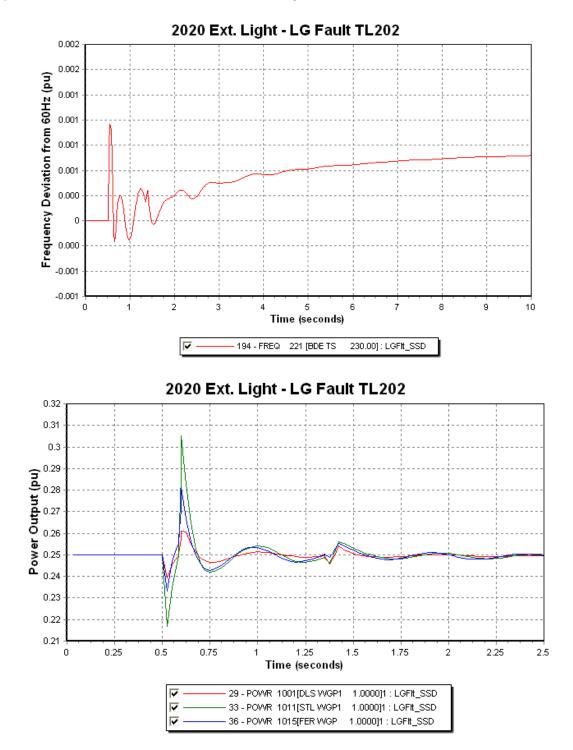
For this contingency a three phase fault has been applied on TL233 near Bottom Brook terminal station for 6 cycles, followed by the tripping of TL233 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.


2020 Ext. Light - 3 Phase Fault TL233

7 3	- ANGL	138[CAT G2	13.800]1 : 3PhFIt_BBK
I	9 - ANGL	2207[BDP G7	13.800]7 : 3PhFlt_BBK
▼ —— 8	- ANGL	436[HRP G3	16.000]1 : 3PhFlt_BBK

Case 8 – LG Fault at TL242 Near HRD

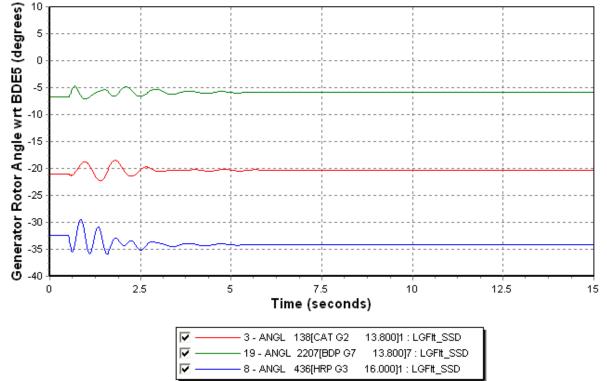
For this contingency a line to ground fault has been applied on TL242 near Holyrood Generating station for 6 cycles, followed by the single phase, then an unsuccessful reclose after 30 seconds. All 3 phases of TL242 are finally tripped after the unsuccessful clearing of the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.

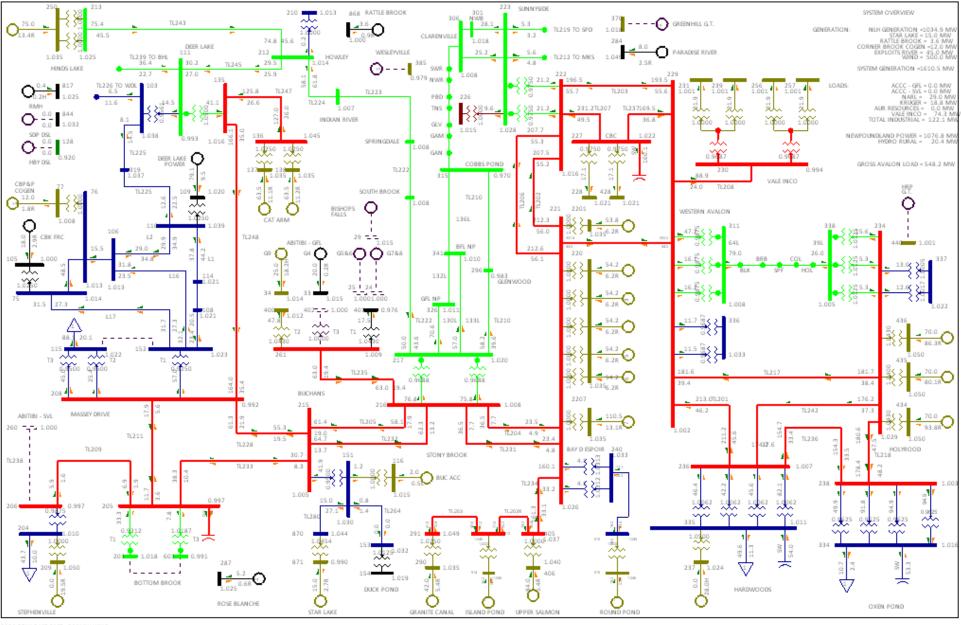


2020 Ext. Light - LG Fault TL242



Case 9 – LG Fault at TL202 Near SSD

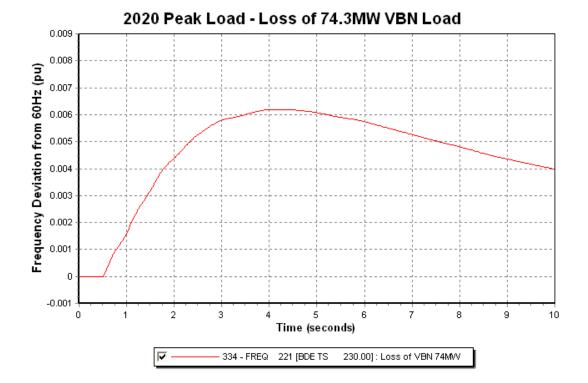

For this contingency a line to ground fault has been applied on TL202 near Sunnyside terminal station for 6 cycles, followed by th single phase, then an unsuccessful reclose after 30 seconds. All 3 phases of TL202 are finally tripped after the unsuccessful clearing of the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.

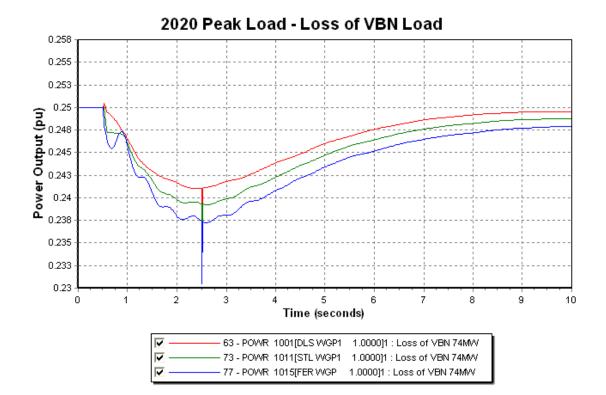

Page 94

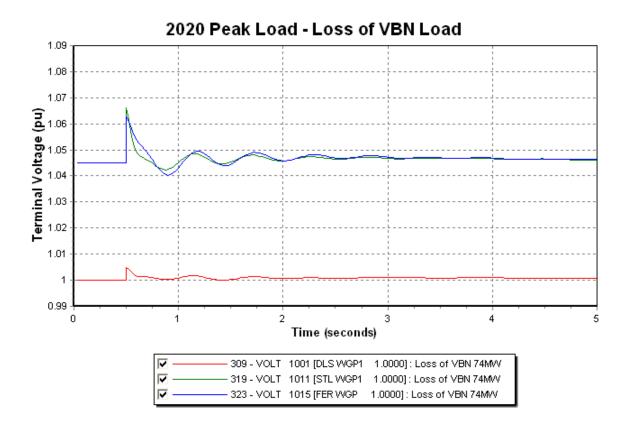
2020 Ext. Light - LG Fault TL202

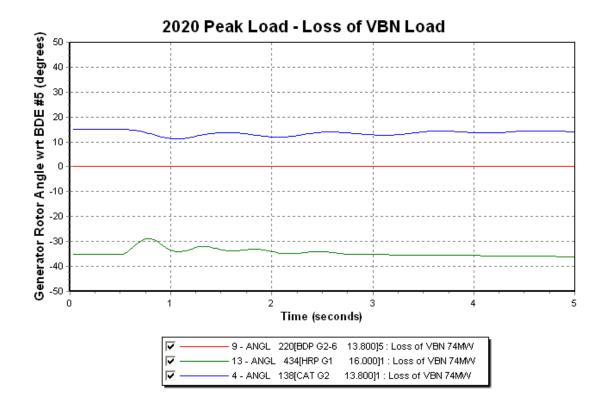
APPENDIX I - STABILITY RESULTS 2020 PEAK LOAD 500 MW WIND GENERATION

2020 PEAK BASE CASE - SOOMW WIND 31% WIND PENETRATION - MINIMUZE THERMAL GENERATION THU, AUG 16 2012 13:47

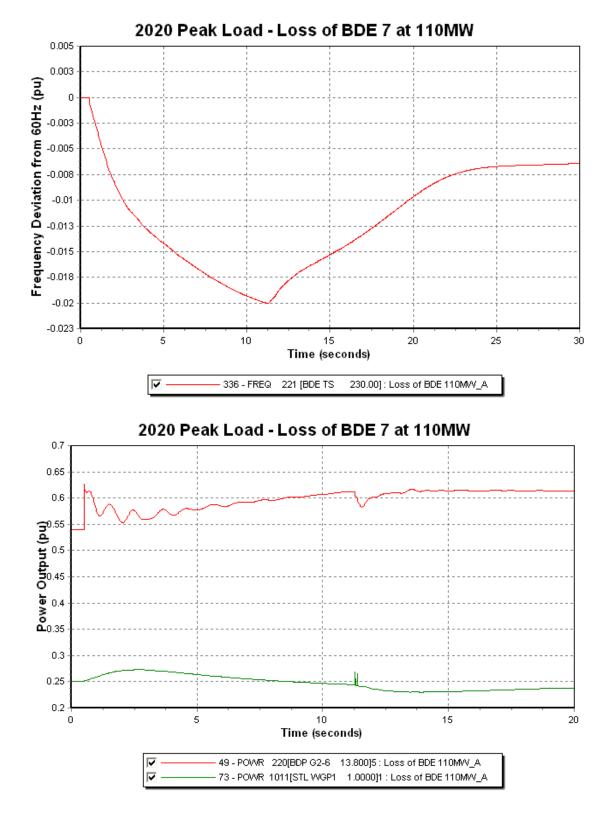

Bus - VOLTAGE (PU) Branch - MVA/% OF RATE C Equipment - MW/Mwar

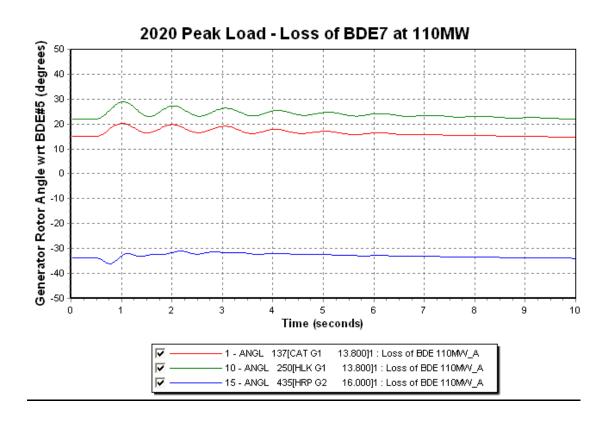

2020 Peak Load – 500MW Wind – Generation Dispatch Prior to Dynamic Simulations

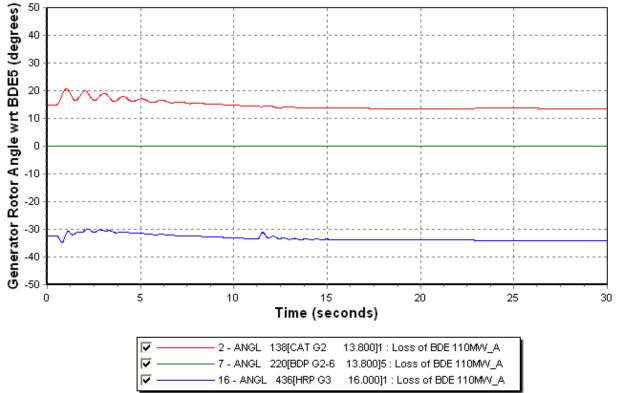

Page 98


Case 1 – Loss of 74.3MW load at VBN

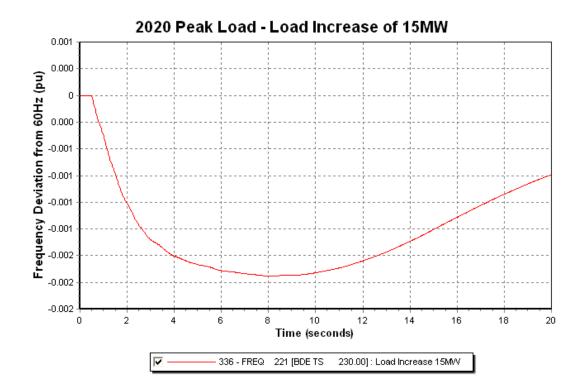
This causes an over frequency condition that reaches a maximum of 60.4Hz. All wind turbines remain on line as frequency doesn't reach 60.6Hz which is first wind turbine trip setpoint. The following plots show system frequency response, power output and terminal voltage from 3 wind turbine plants, and generator rotor angle with respect to Bay d'Espoir Unit 5.

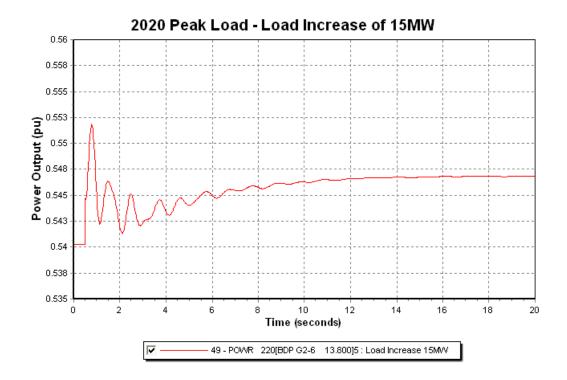


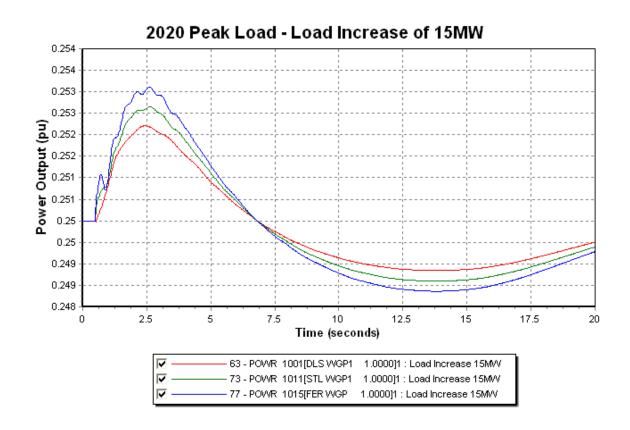



Case 2 – Loss of Largest Unit (BDE 7 at 110 MW)

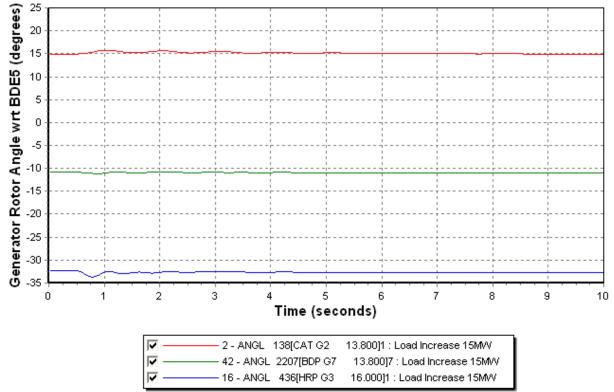
For this contingency, the system is stable and all wind turbines remain connected to the grid. Frequency decline reaches 58.8 Hz and is arrested by operation of 35MW of load shedding. The plots below outline the system frequency, wind turbine / Bay d'Espoir Unit 5 power output and some key generator rotor angle with respect to Bay d'Espoir Unit 5.

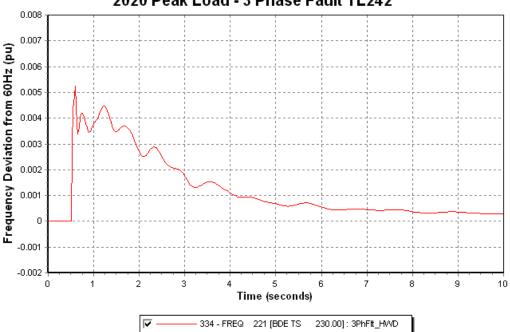



2020 Peak Load - Loss of BDE7 at 110MW

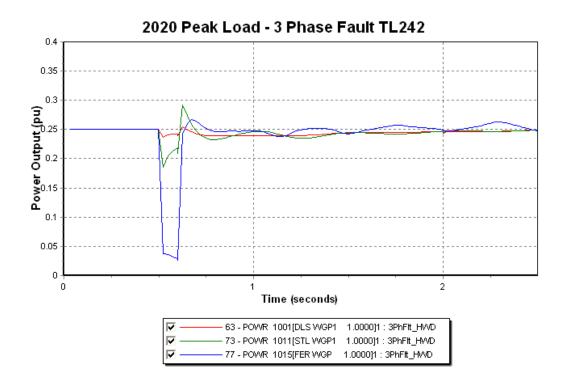


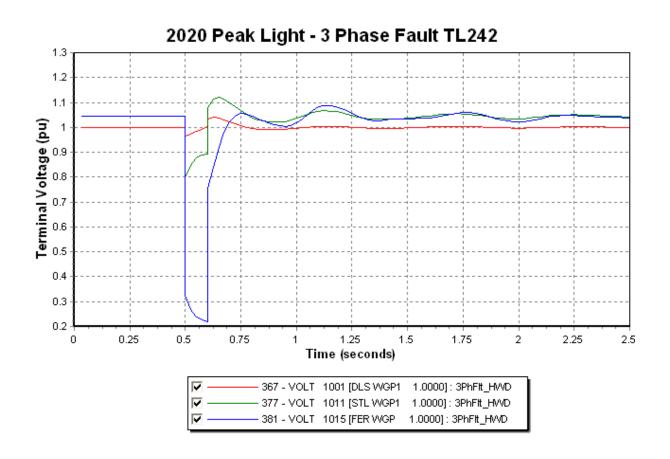
Case 3 – Sudden Load Increase of 15 MW

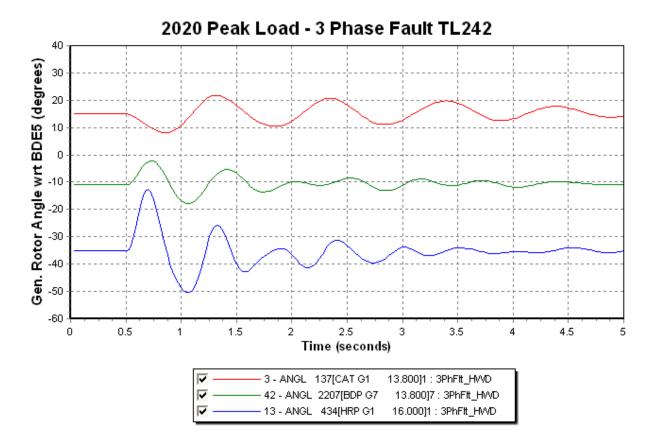

For this event, system frequency reaches a minimum level 59.9 Hz, which is slightly above the first stage under frequency load shedding stage of 59.5 Hz. This is the pre-defined limit of frequency decline for this type of event. The plots below outline the system frequency, Bay d'Espoir Unit 5 and some wind turbine power output responses.



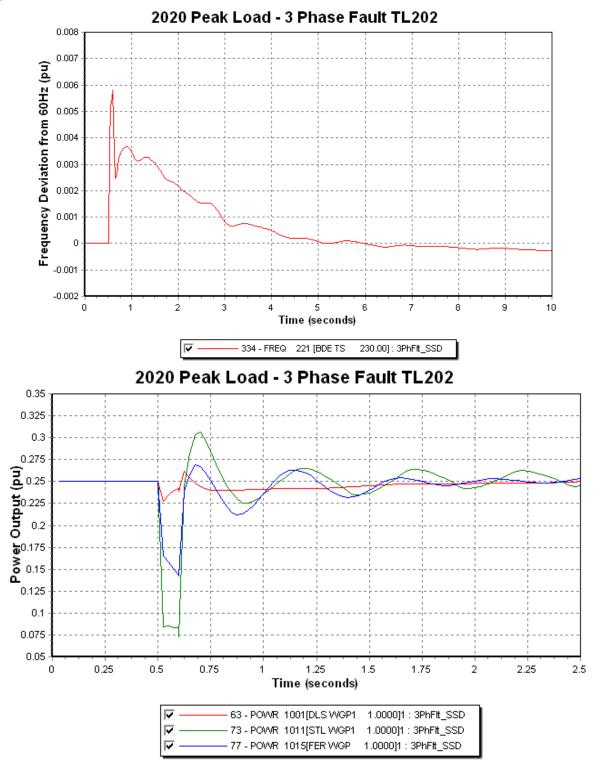
2020 Peak Load - Load Increase of 15MW

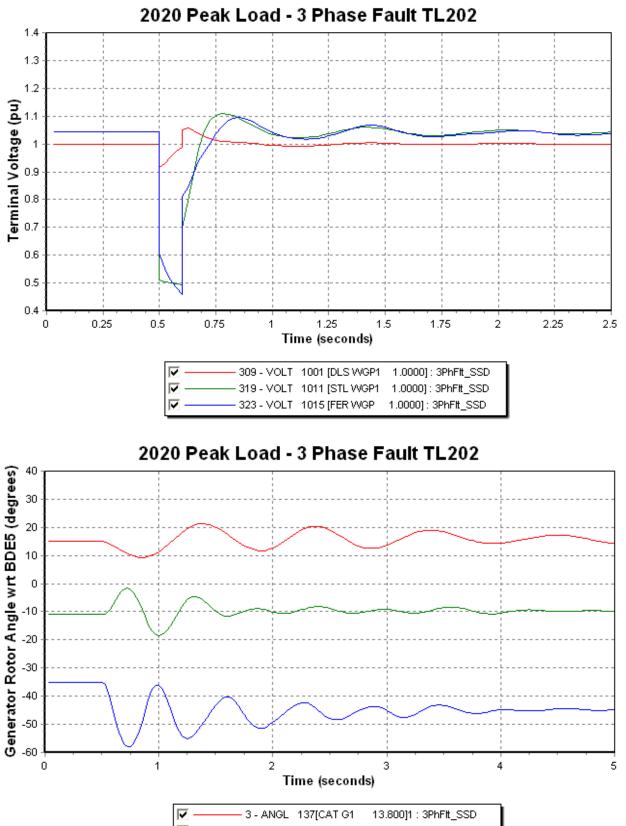


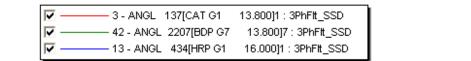

Case 4 – 3 Phase Fault at HWD (6 cycles – Trip TL242)


For this contingency a three phase fault has been applied on TL242 near Hardwoods terminal station for 6 cycles, followed by the tripping of TL242 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power output and voltage at terminals of the machines and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

2020 Peak Load - 3 Phase Fault TL242

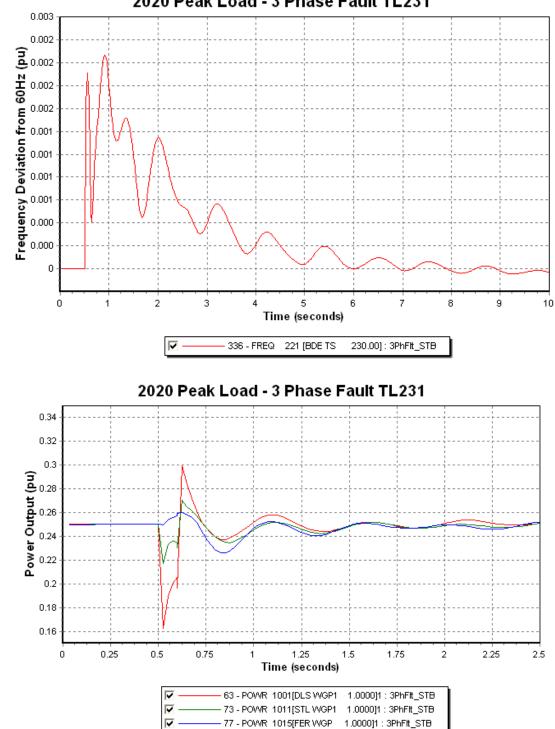


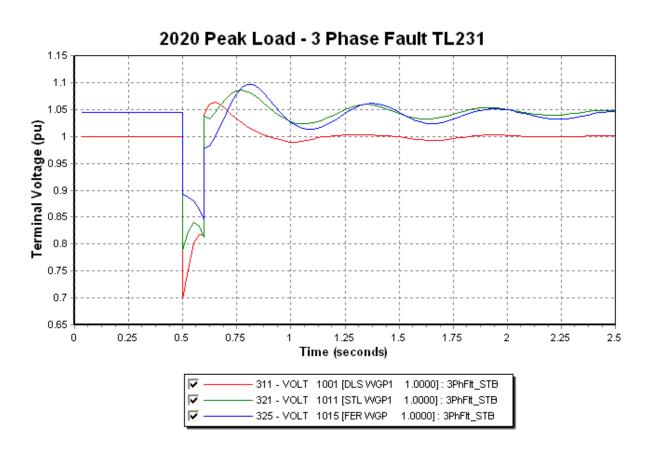


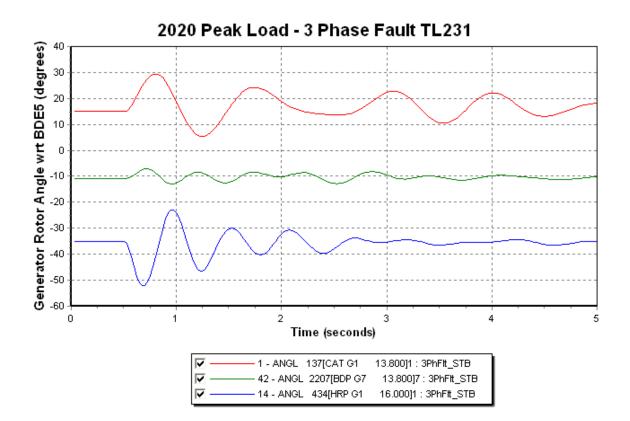


Case 5 – 3 Phase Fault at SSD (6 cycles – Trip TL202)

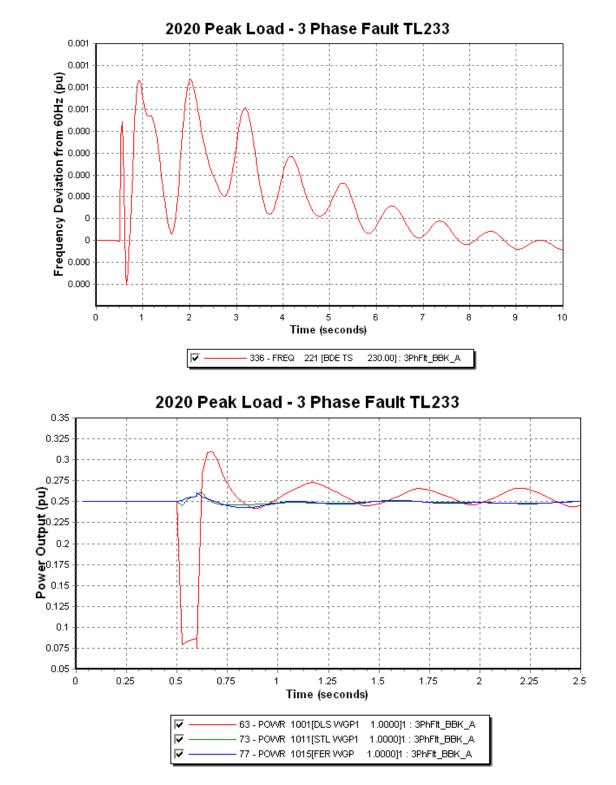
For this contingency a three phase fault has been applied on TL202 near Sunnyside terminal station for 6 cycles, followed by the tripping of TL202 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power output and voltage at terminals of the machines and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

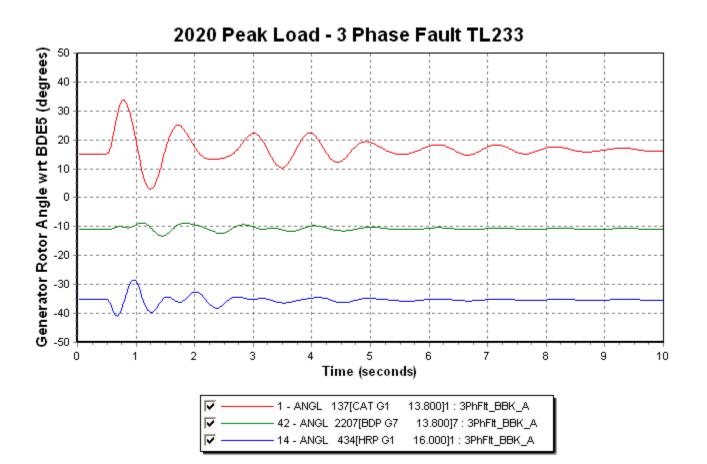




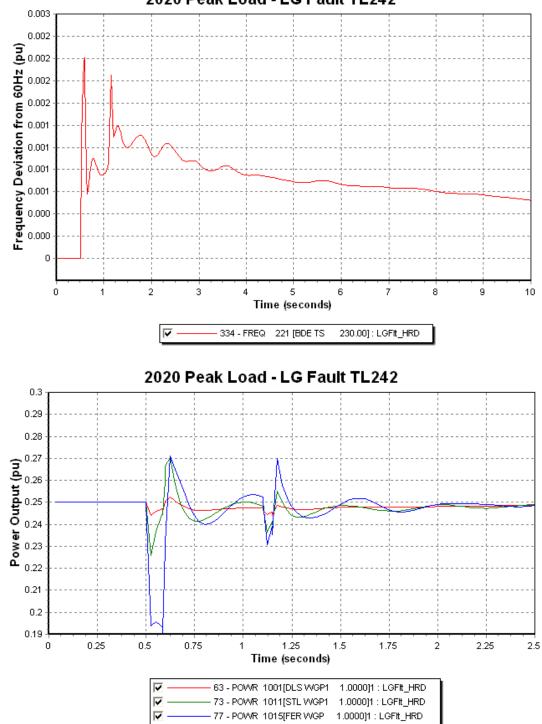

Case 6 – 3 Phase Fault at STB (6 cycles – Trip TL231)

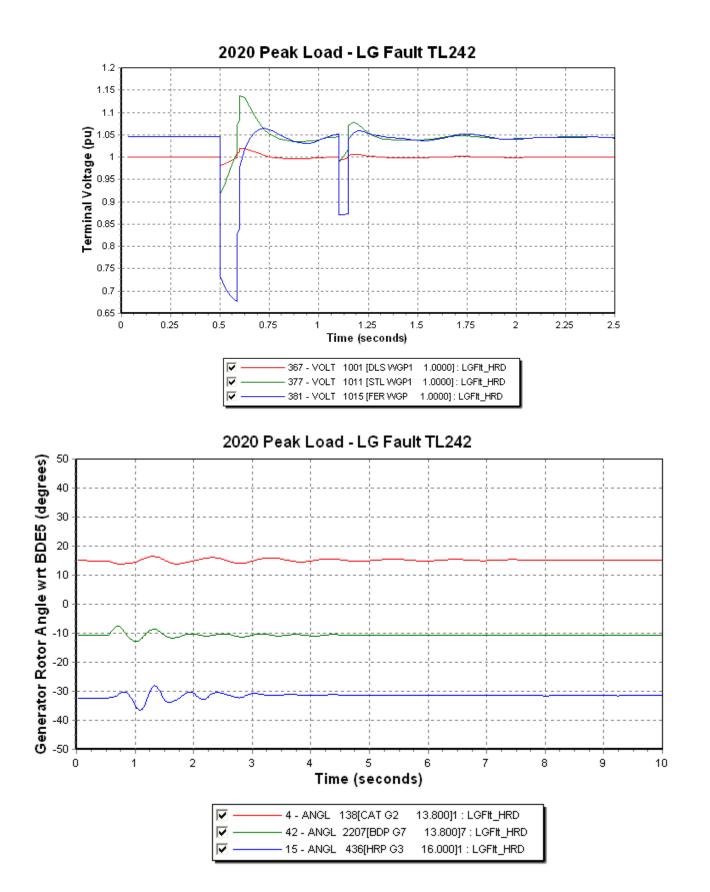
For this contingency a three phase fault has been applied on TL231 near Stony Brook terminal station for 6 cycles, followed by the tripping of TL231 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power output and voltage at terminals of the machines and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.


2020 Peak Load - 3 Phase Fault TL231



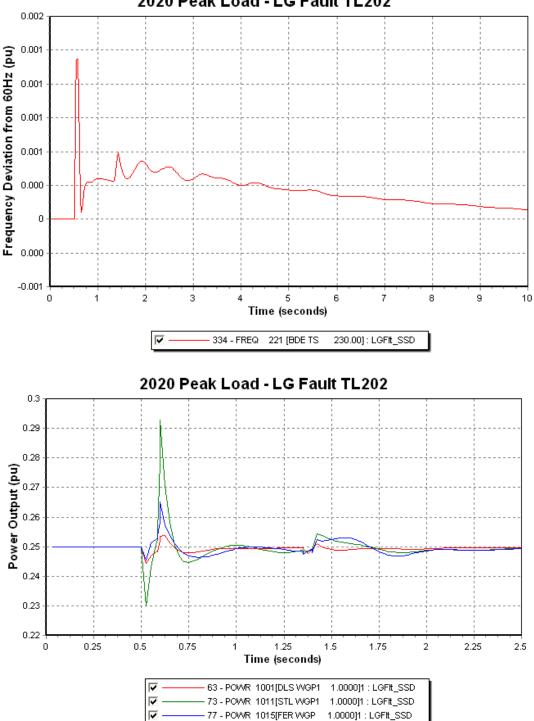
Case 7 – 3 Phase Fault at BBK (6 cycles – Trip TL233)


For this contingency a three phase fault has been applied on TL233 near Bottom Brook terminal station for 6 cycles, followed by the tripping of TL233 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power output and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

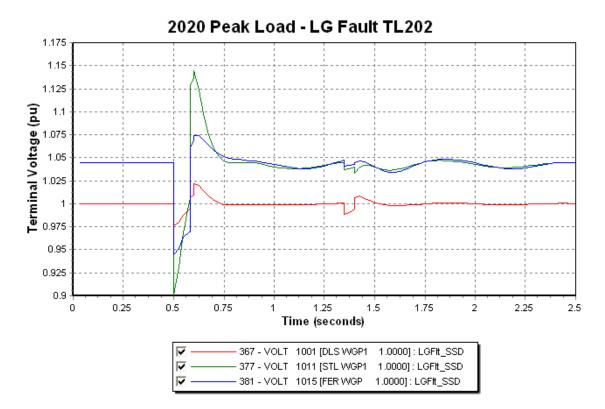


Case 8 – LG Fault at TL242 Near HRD

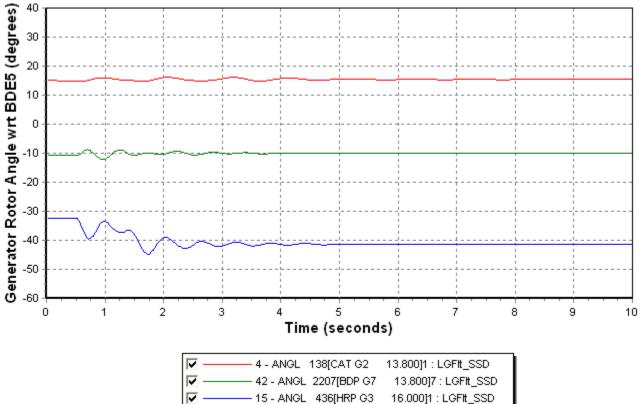
For this contingency a line to ground fault has been applied on TL242 near Holyrood Generating station for 6 cycles, followed by the single phase, then an unsuccessful reclose after 30 seconds. All 3 phases of TL242 are finally tripped after the unsuccessful clearing of the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.

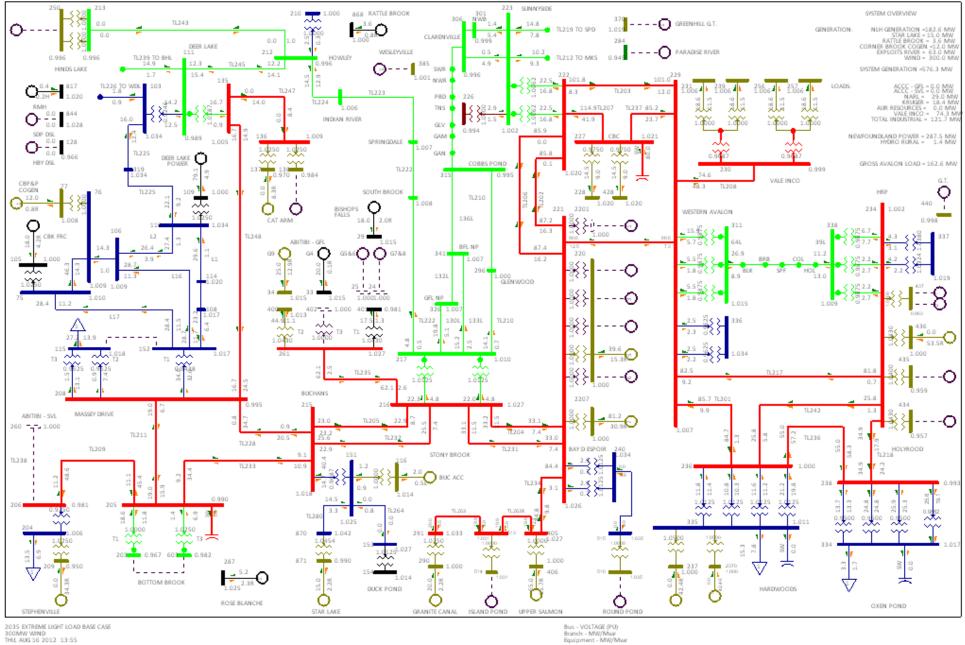


2020 Peak Load - LG Fault TL242



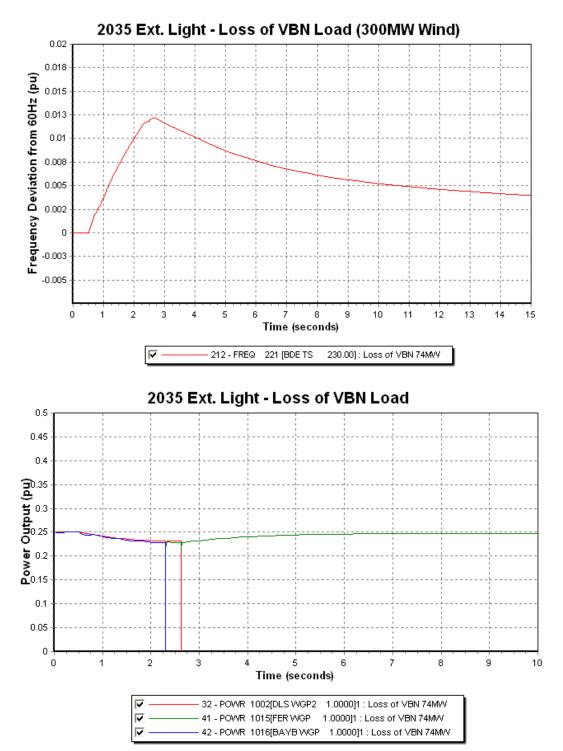
Case 9 – LG Fault at TL202 Near SSD

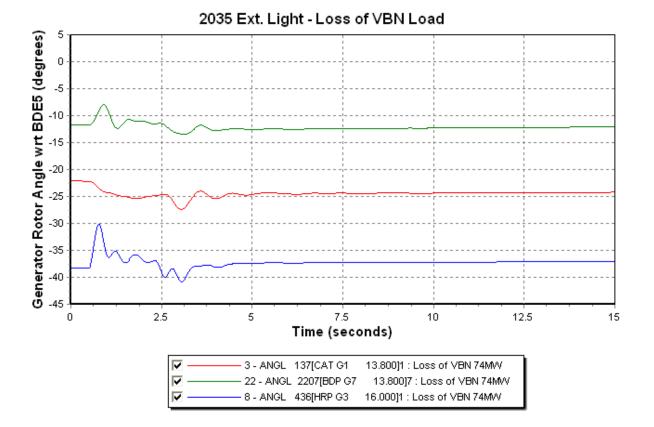

For this contingency a line to ground fault has been applied on TL202 near Sunnyside terminal station for 6 cycles, followed by the single phase, then an unsuccessful reclose after 30 seconds. All 3 phases of TL202 are finally tripped after the unsuccessful clearing of the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.


2020 Peak Load - LG Fault TL202

2020 Peak Load - LG Fault at TL202

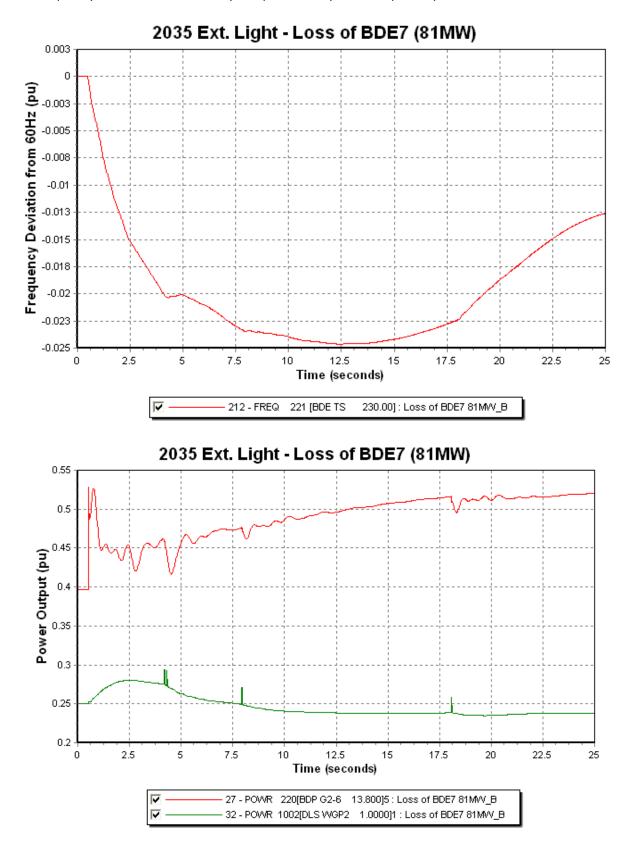
APPENDIX J - STABILITY RESULTS 2035 EXTREME LIGHT LOAD 300 MW WIND GENERATION




300MW WIND THU, AUG 16 2012 13:55

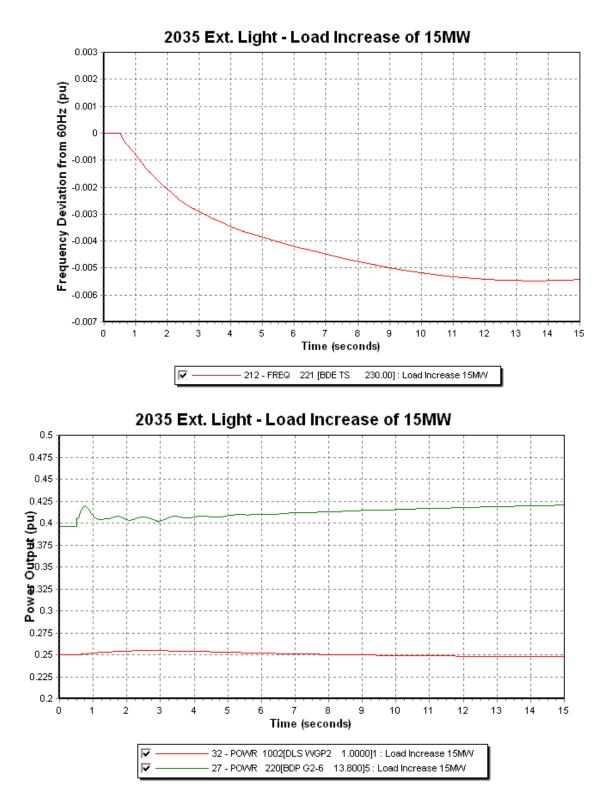
2035 Extreme Light Load – 300MW Wind – Generation Dispatch Prior to Dynamic Simulations

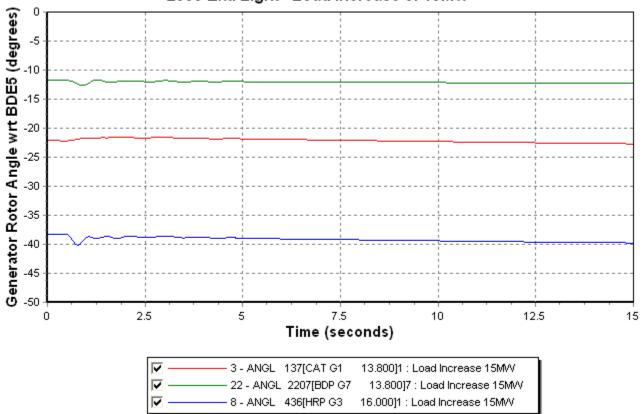
Case 1 – Loss of 74.3MW load at VBN


This causes an over frequency condition above 61.2 Hz. All wind turbines over frequency protection are engaged at 61.2Hz with time delay of 0.2seconds, thus causing loss of 300MW of generation from the island. This is considered unacceptable, thus there was a reduction in over frequency settings for several wind turbines to prevent mass tripping of all units at the same time. The following plots show system frequency response and power output from 3 wind turbine plants (two of which trip at 60.6 and 60.75 Hz respectively).

Case 2 – Loss of Largest Unit (BDE 7 at 81 MW)

For this contingency, the system is stable and all wind turbines remain connected to the grid. Frequency decline reaches 58.5 Hz and is arrested by operation of 36MW of load shedding. The plots below outline the system frequency and wind turbine / Bay d'Espoir Unit 5 power output responses.

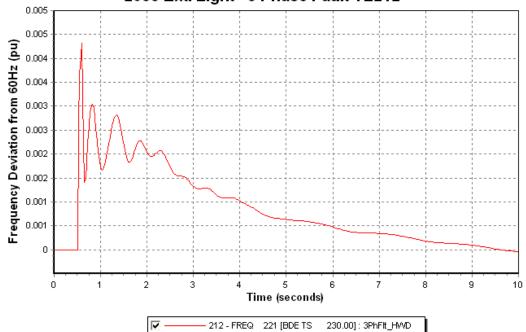

5 Generator Rotor Angle wrt BDE5 (degrees) 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 7.5 2.5 10 12.5 15 17.5 20 0 5 22.5 25 Time (seconds) 3 - ANGL 137[CAT G1 13.800]1 : Loss of BDE7 81MVV_B ~ ~ 5 - ANGL 220[BDP G2-6 13.800]5 : Loss of BDE7 81MAV_B ~ 8 - ANGL 436[HRP G3 16.000]1 : Loss of BDE7 81MVV_B

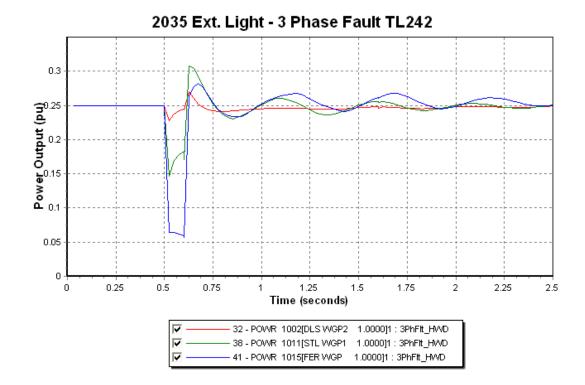

2035 Ext. Light - Loss of BDE7 (81MW)

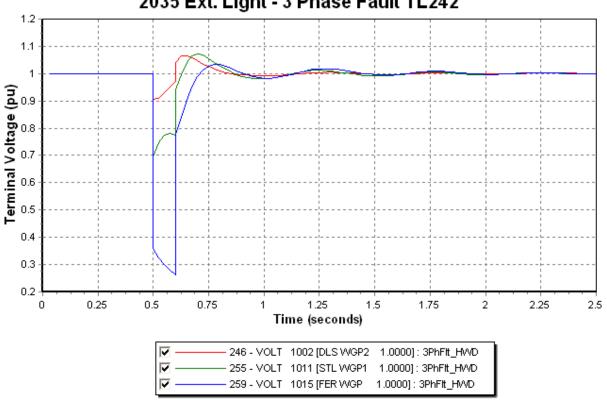
Page 126

Case 3 – Sudden Load Increase of 15 MW

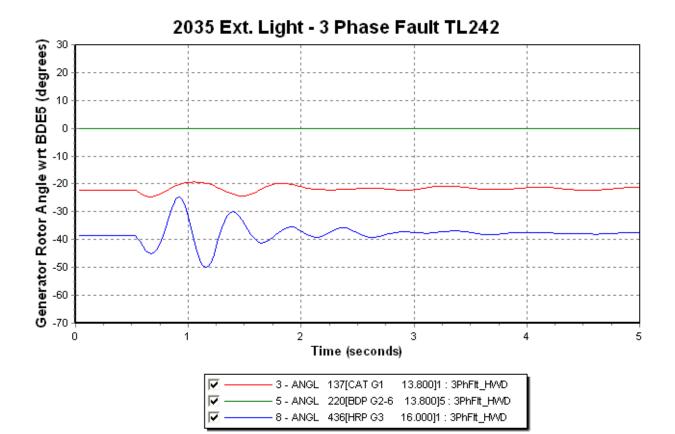
For this event, system frequency reaches a minimum level 59.6 Hz, which is slightly above the first stage under frequency load shedding stage of 59.5 Hz. This is the pre-defined limit of frequency decline for this type of event. The plots below outline the system frequency and a wind turbine / Bay d'Espoir Unit 5 power output responses.

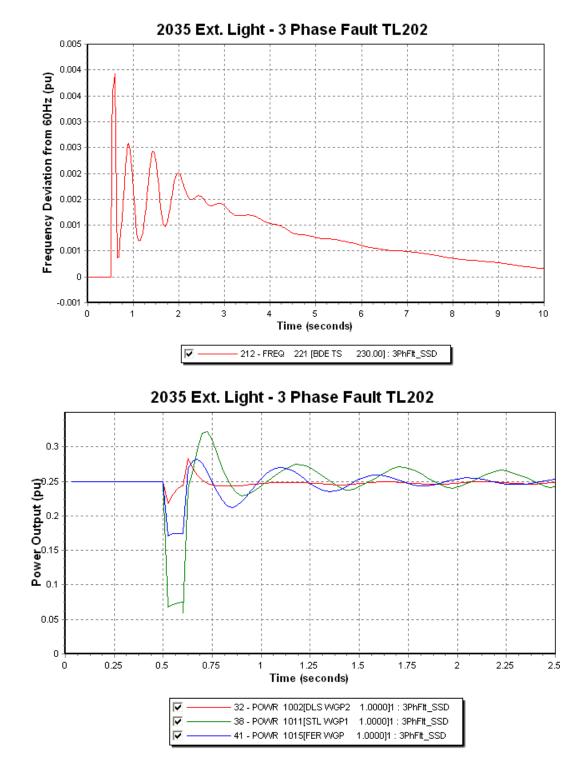


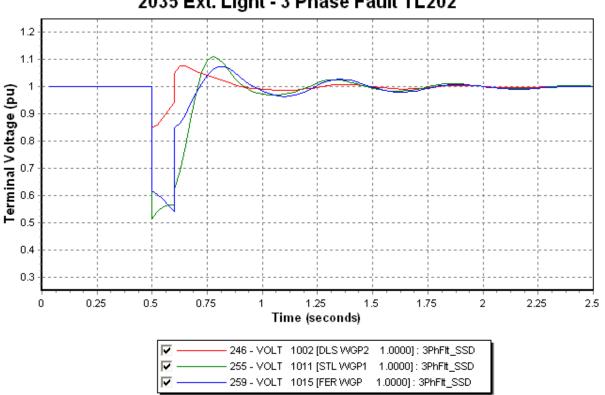


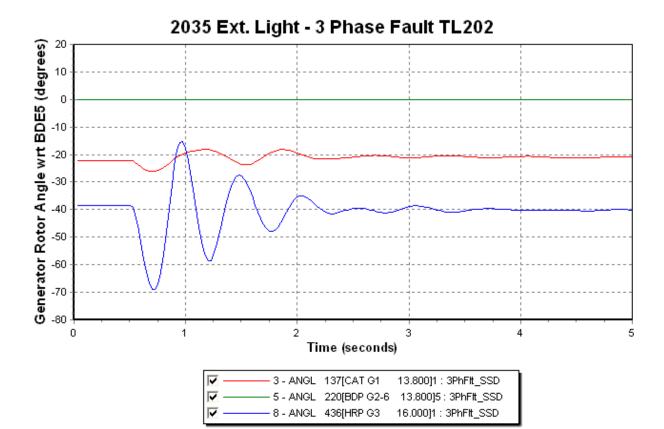

2035 Ext. Light - Load Increase of 15MW

Case 4 – 3 Phase Fault at HWD (6 cycles – Trip TL242)


For this contingency a three phase fault has been applied on TL242 near Hardwoods terminal station for 6 cycles, followed by the tripping of TL242 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power output and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

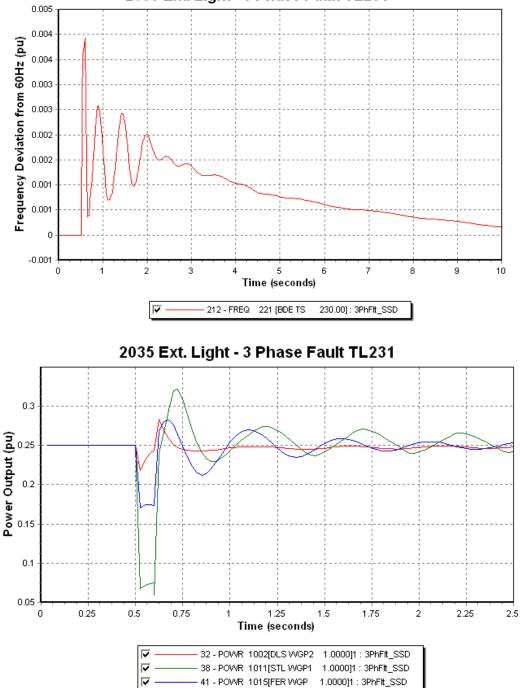


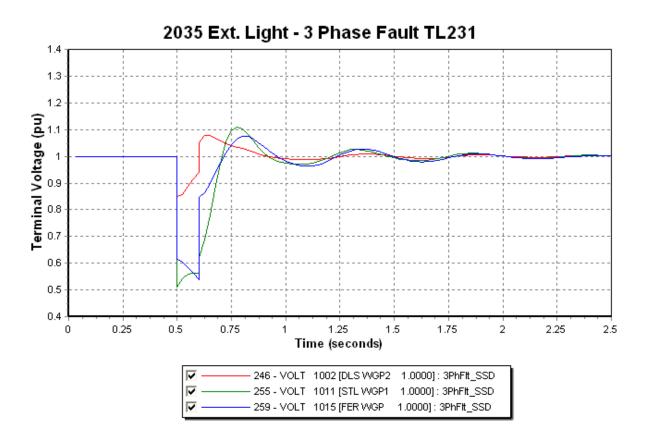

2035 Ext. Light - 3 Phase Fault TL242

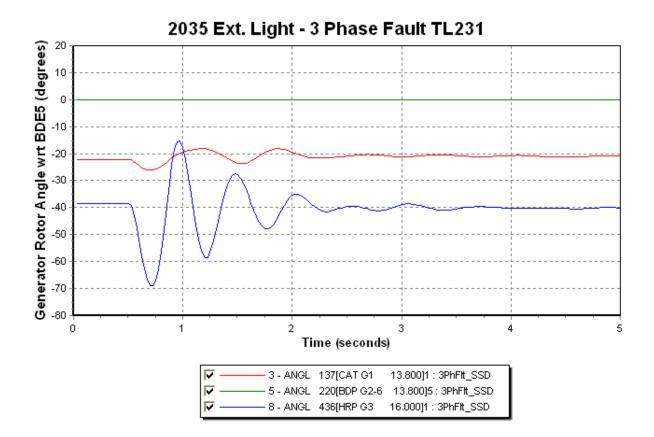


Case 5 – 3 Phase Fault at SSD (6 cycles – Trip TL202)

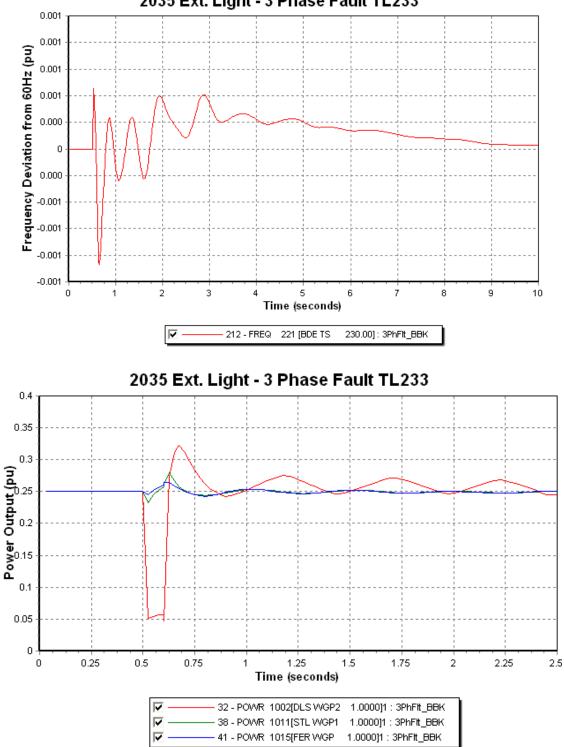
For this contingency a three phase fault has been applied on TL202 near Sunnyside terminal station for 6 cycles, followed by the tripping of TL202 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power output and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

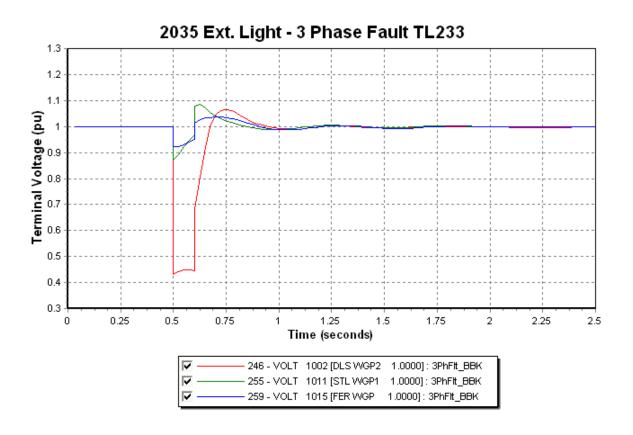





Case 6 – 3 Phase Fault at STB (6 cycles – Trip TL231)

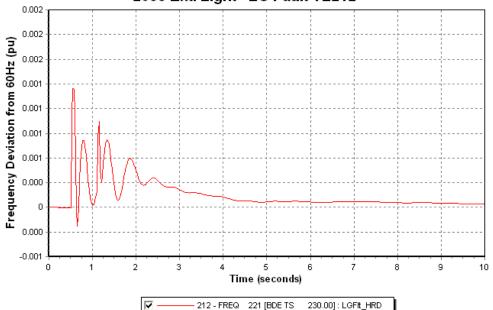
For this contingency a three phase fault has been applied on TL231 near Stony Brook terminal station for 6 cycles, followed by the tripping of TL231 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.

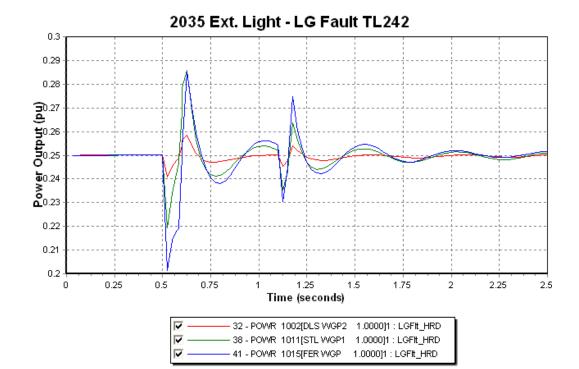


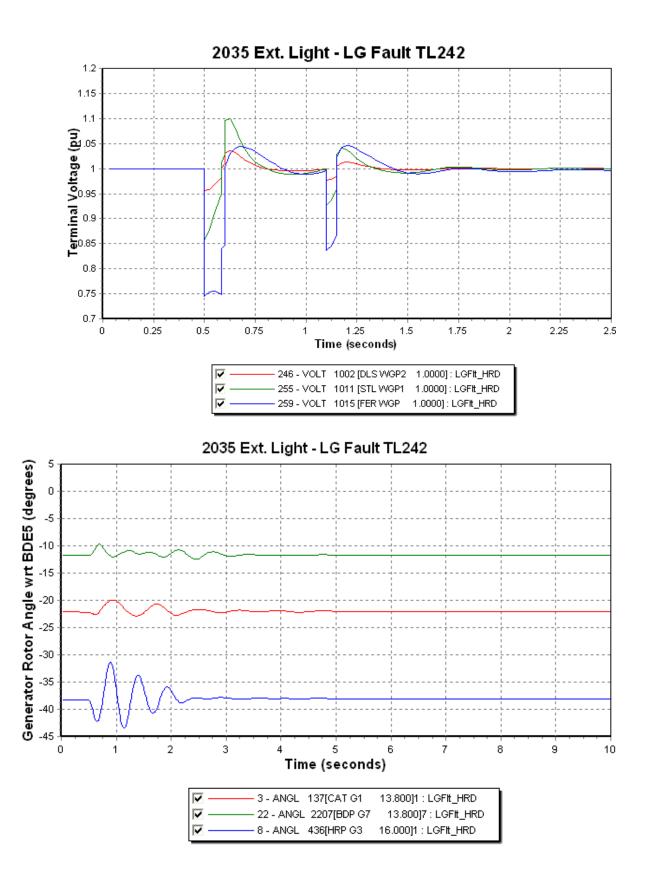



Case 7 – 3 Phase Fault at BBK (6 cycles – Trip TL233)

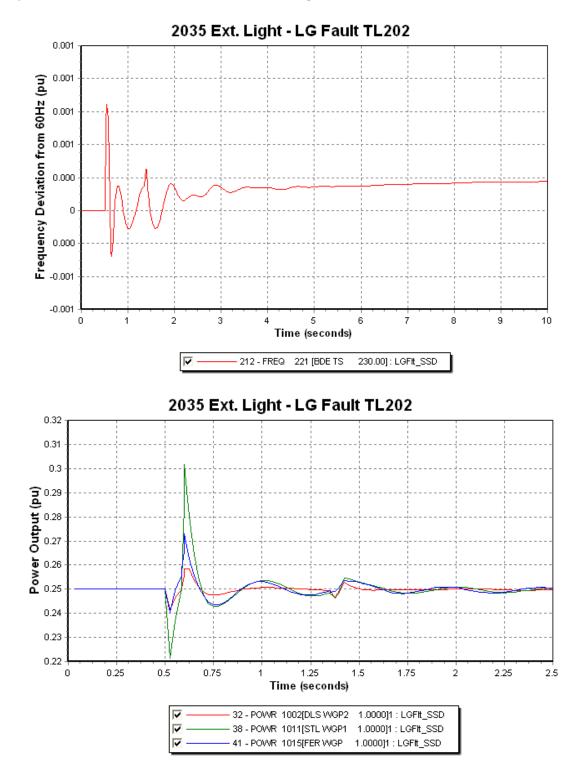
For this contingency a three phase fault has been applied on TL233 near Bottom Brook terminal station for 6 cycles, followed by the tripping of TL233 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.

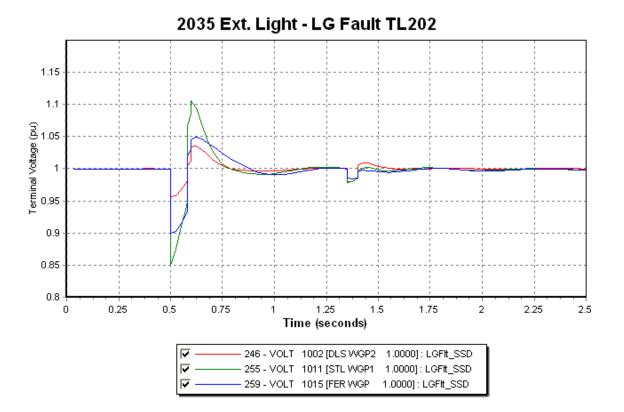


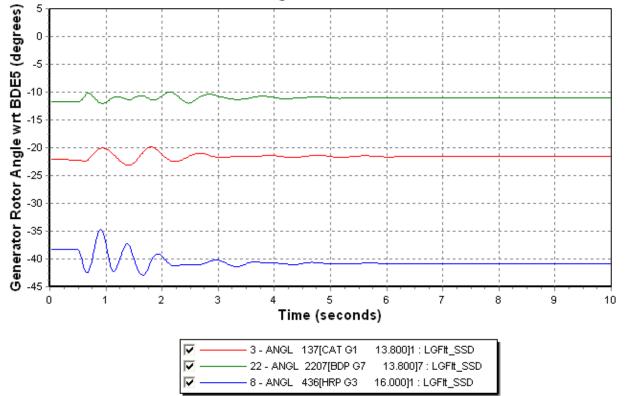



Case 8 – LG Fault at TL242 Near HRD

For this contingency a line to ground fault has been applied on TL242 near Holyrood Generating station for 6 cycles, followed by the single phase, then an unsuccessful reclose after 30 seconds. All 3 phases of TL242 are finally tripped after the unsuccessful clearing of the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.


2035 Ext. Light - LG Fault TL242




Case 9 – LG Fault at TL202 Near SSD

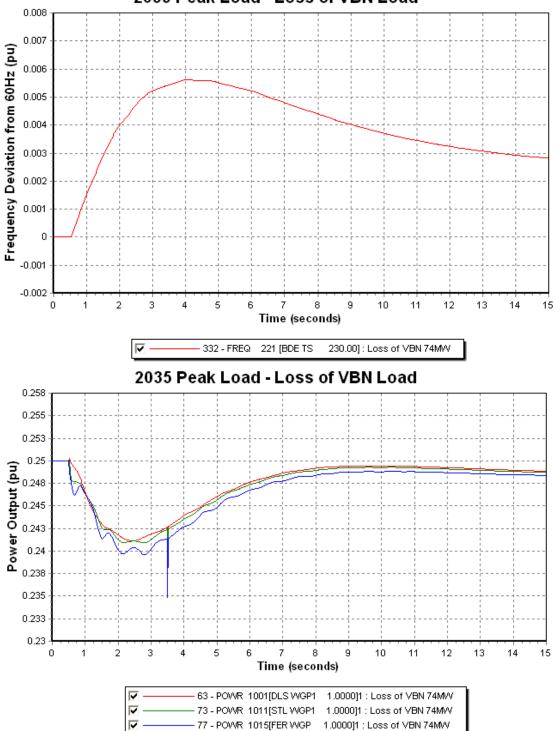
For this contingency a line to ground fault has been applied on TL202 near Sunnyside terminal station for 6 cycles, followed by the single phase, then an unsuccessful reclose after 30 seconds. All 3 phases of TL202 are finally tripped after the unsuccessful clearing of the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency as well as wind turbine power output and voltage at terminals of the machines. The LVRT capability of the wind turbines enable them to ride through the fault condition.

2035 Ext. Light - LG Fault TL202

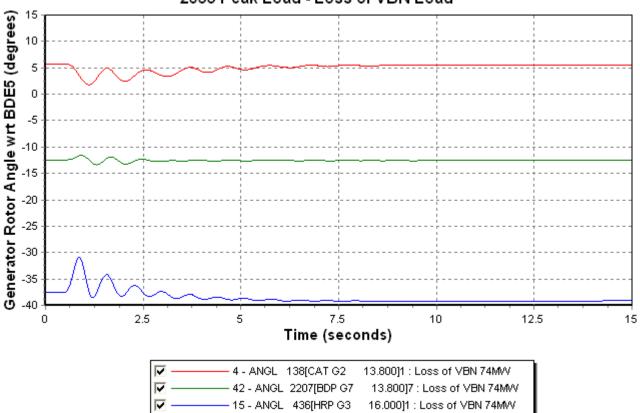
APPENDIX K - STABILITY RESULTS 2035 PEAK LOAD 500 MW WIND GENERATION

223 SUNNYSIDE 210 💻 868 RATTLE BROOK SYSTEM OVERVIEW 1.016 74.8 TL243 - 🕞 GREENHILL G.T. **1**.6 0,90 TL219 TO SPD GENERATION NLH GENERATION =1113.0 MV STAR LAKE = 15.0 MW RATTLE BROOK = 3.6 MW 10.28 6.2 **CLAREN VILLE** 74.3 DEER LAKE CORNER BROOK COGEN -12 3 M O PARADISE RIVER 212 WESLEYVILLE 27. EXPLOITS RIVER 1.027 TL212 TO MKS TL239 TO BHL 32.3 1.035 HOWLEY 1.044 WIND -1.1 2.48 20.1 18.319.9 385 HINDS LAKE Θ SW8 SYSTEM GENERATION -1883.6 MW 5.5 22.5 21.4 0.981 NWR ACCC - GFL = 0.0 MW ACCC - SVI = 0.0 MW NABL = 29.0 MW KRUKER = 18.7 MW AUR RESOURCES = 0.0 MW VALE INCO = 74.3 M TOTAL INDUSTRIAL = 122.0 MV 817 TL226 TO WDL 103 664 1006 LOADS: 256 1.006 4 24.8 TL247 9 31. 17.2TL223 27.1 .019 PBD 226 TL224 1.014 TNS 204.7TL207 TL237173.2 21. O 100 INDIAN RIVER 3 31.8 123.8 **Theo** 1.013 GEV 1.040 224.1SDP DSL 1.042 GIM 1.002 NEWFOUNDLAND POWER = 1310.3 MM HYDRO RURAL = 29.8 MM $O_{\frac{1}{10}}$ 128 1.023 SPRIN GDALE 38.5 1.017 1,4250 0,9750 223.8 TL225 GAN DEER LAKE 918 HBY DSL 38.7 COBBS POND GROSS AVALON LOAD = 587.4 MW TL222 74.6 VALE INCO CBP&P 48.5 TL208 Q COGEN 63.5 1.020 SOUTH BROOK HRP TL210 Θ ᄍ 1.017 440 Ó О Ó 2.68 BISHOPS FALLS 234 221 ĭφš WESTERN AVALON 136L CAT ARM Q 14.28 338 53.8 10.2 TL248 CBK FBC 29 = -ABITIBI - GFL 391 919.1 BEL NP 234.5 6546 O O \circ 341 5.3 64 G78.8 1.020 18.42 69.7 3.0 3 \sim 296 14.28 HO 0.988 GLENWOOD 31. 1.0¥0 18.90 3.00 33 69.3 GEL N.P. 14.28 596.0 28.0 19.0 .026 326 1.02 L17 26. 28.42.4 TL222 130 133L TL210 69. 14.9 14.28 3.8 10100 .048 تملم 2 1.011 T3 ٠ ŶŶŶ 167.2 163. TL235 0.9962 69.4R 81.1 80 14.28 яя BUCHANS 221. 88.7 223.0TL20: MASSEY DRIVE ABITIBI - SVL 81.78 260 - 1.000 988 TL211 12.7TL232 TL236 TL228 TL209 HOLYROOD BAY D ESPOIR STONY BROOK 15.1 1218 TL238 159. -38 236 1.014 238 2.6 1.016 14.31,493 1,043 $\sim \sim$ $\sim \sim$ TL28/ $\sim \sim \sim$ ~t~ 335 1.042 870 -~~ -Ŷ 51.9 871 1.030 0.990 ~~~ Q 4 1 . 406 -志 BOTTOM BROOK DUCK POND HARDWOODS Q Q ISLAND POND О ROSE BLANCHE OXEN POND STAR LAKE GRANITE CANAL UPPER SALMON STEPHEN VILLI ROUND POND 2035 PEAK BASE CASE - SOOMW WIND

THU. AUG 16 2012 13:56

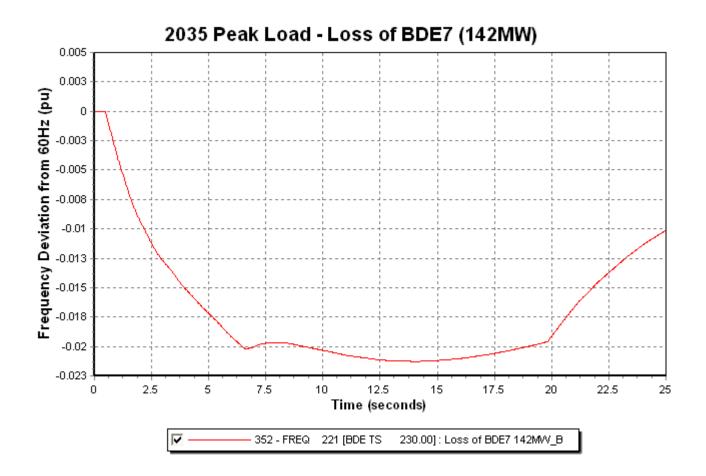

Bus - VOLTAGE (PU) Branch - MW/Mvar Equipment - MW/Mva

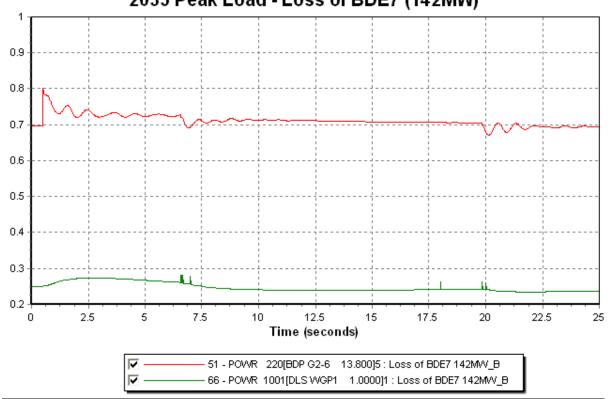
2035 Peak Load – 500MW Wind – Generation Dispatch Prior to Dynamic Simulations


Page 143

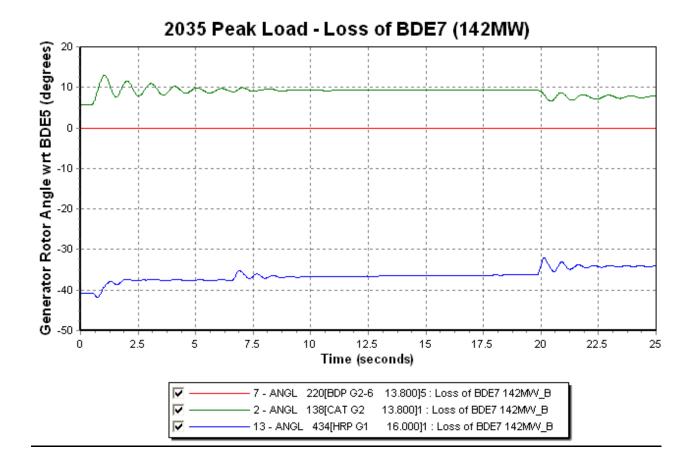
Case 1 – Loss of 74.3MW load at VBN

This causes an over frequency condition that reaches a maximum of 60.3Hz. All wind turbines remain on line as frequency doesn't reach 60.6Hz which is first wind turbine trip setpoint. The following plots show system frequency response and power output from 3 wind turbine plants. Spikes in wind turbine power are numerical in nature caused by stopping and starting the simulation at that point in time.

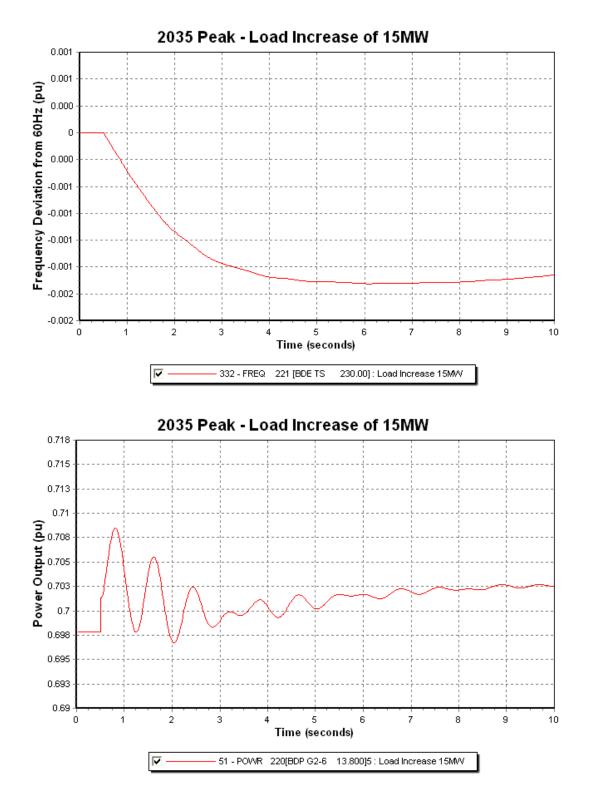

2035 Peak Load - Loss of VBN Load

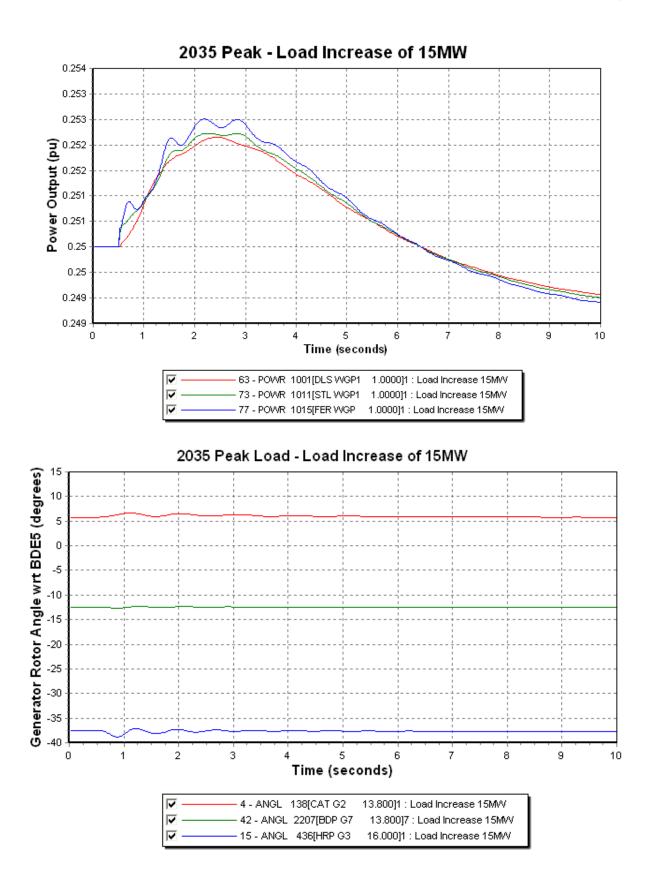


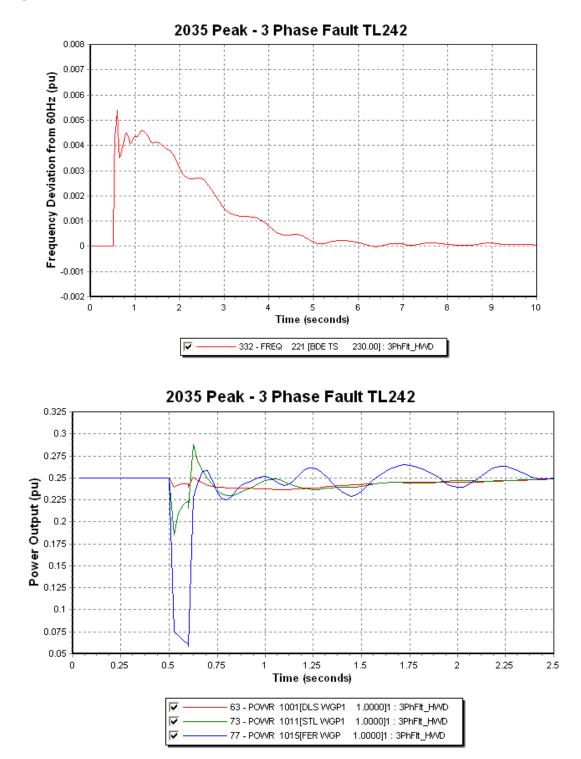
2035 Peak Load - Loss of VBN Load

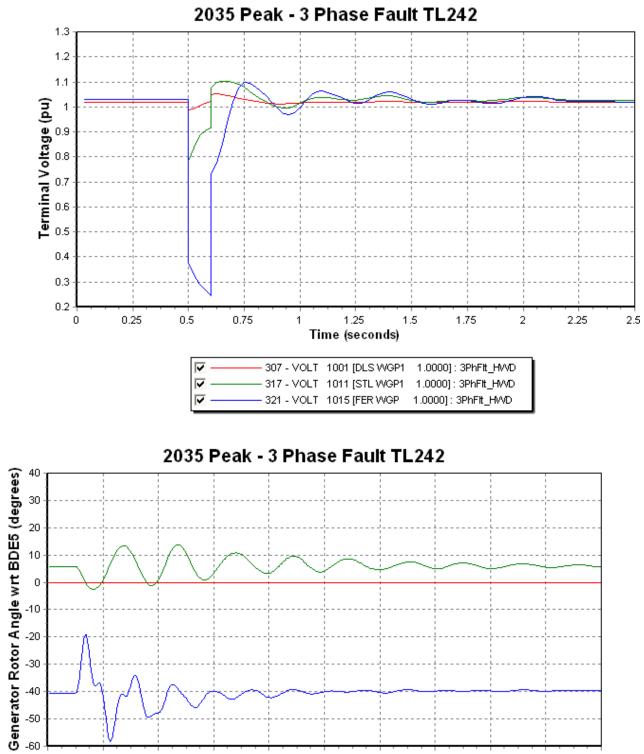

Case 2 – Loss of Largest Unit (BDE 7 at 110 MW)

For this contingency, the system is stable and all wind turbines remain connected to the grid. Frequency decline reaches 58.8 Hz and is arrested by operation of 35MW of load shedding. The plots below outline the system frequency, wind turbine / Bay d'Espoir Unit 5 power output and some key generator rotor angle with respect to Bay d'Espoir Unit 5.

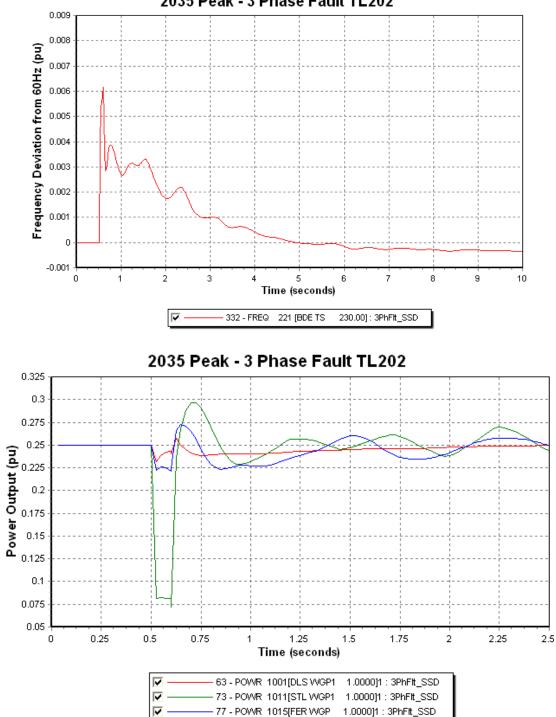



2035 Peak Load - Loss of BDE7 (142MW)

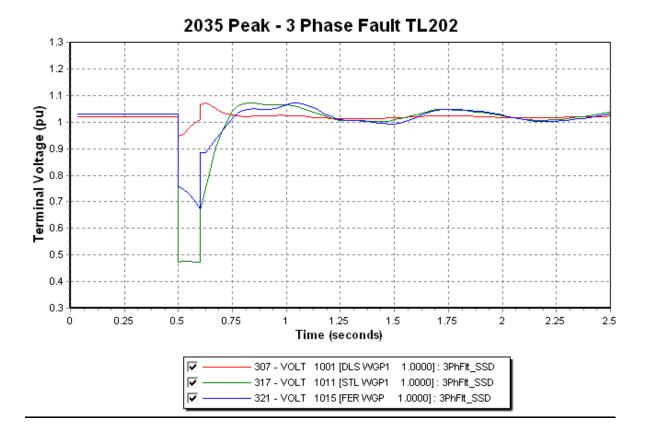

Case 3 – Sudden Load Increase of 15 MW

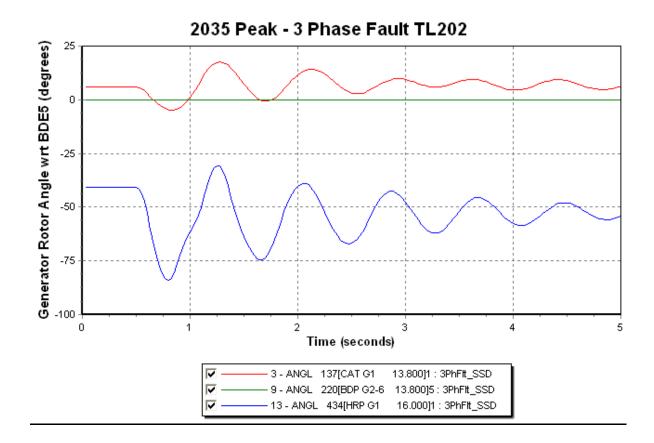

For this event, system frequency reaches a minimum level 59.9 Hz, which is not close to the first stage under frequency load shedding stage of 59.5 Hz. This load increase has no impact on system operations with respect to wind turbine operation. The plots below outline the system frequency, Bay d'Espoir Unit 5 and some wind turbine power output responses.

For this contingency a three phase fault has been applied on TL242 near Hardwoods terminal station for 6 cycles, followed by the tripping of TL242 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power output and voltage at terminals of 3 wind turbines and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

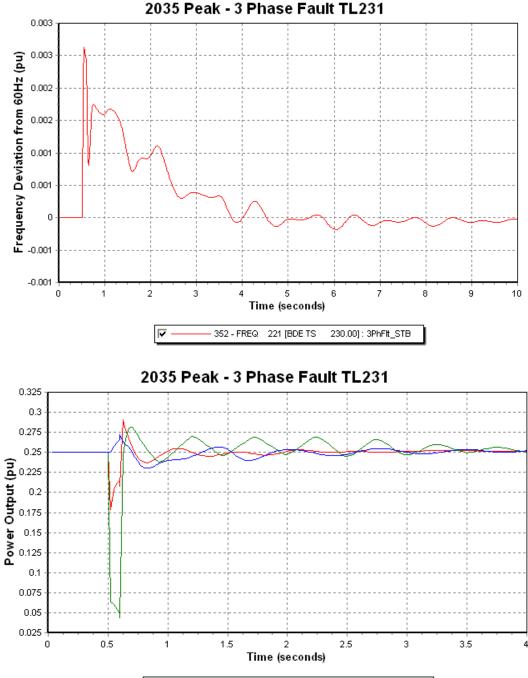


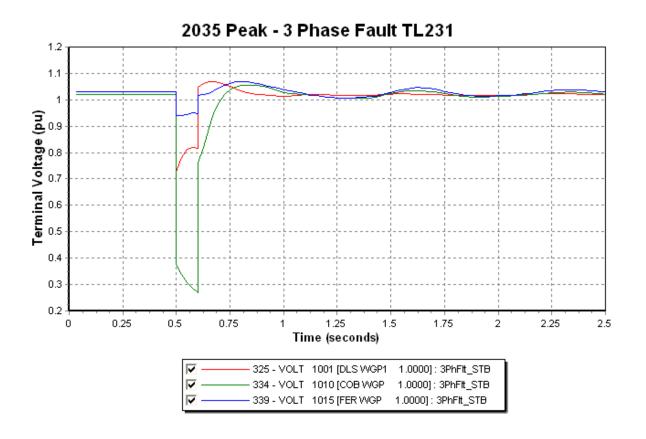
Time (seconds)

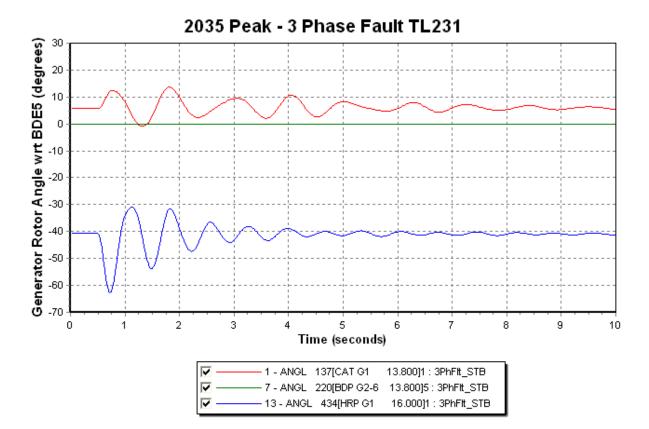

9 - ANGL	220[BDP G2-6	13.800]5 : 3PhFlt_HVVD
🔽	137[CAT G1	13.800]1 : 3PhFlt_HV/D
▼	434[HRP G1	16.000]1 : 3PhFlt_HVVD

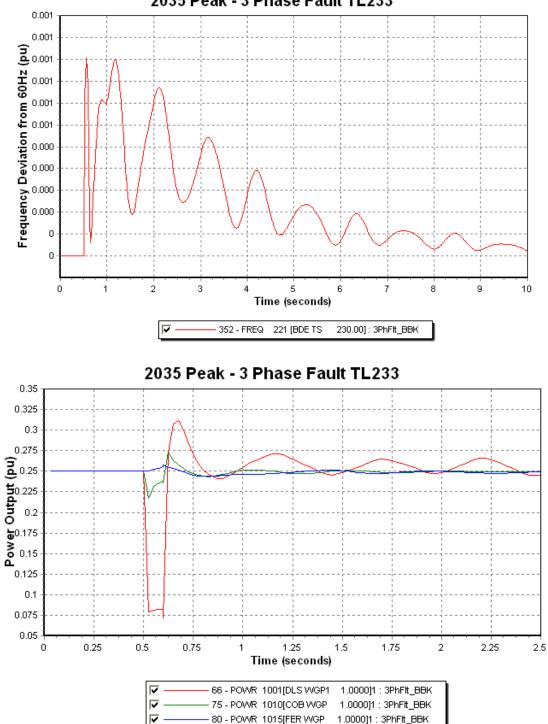

Case 5 – 3 Phase Fault at SSD (6 cycles – Trip TL202)

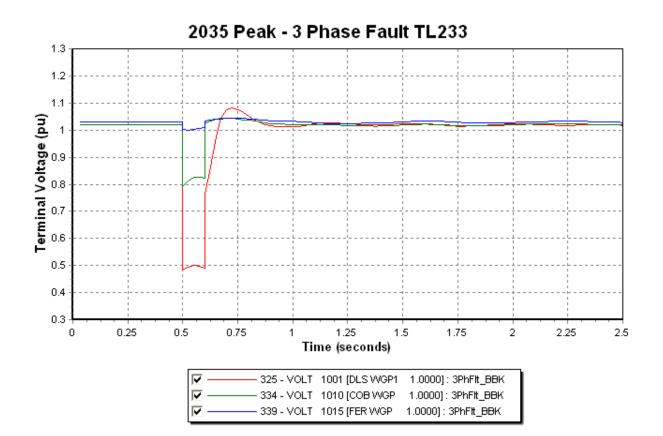
For this contingency a three phase fault has been applied on TL202 near Sunnyside terminal station for 6 cycles, followed by the tripping of TL202 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power output and voltage at terminals of 3 wind turbines and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

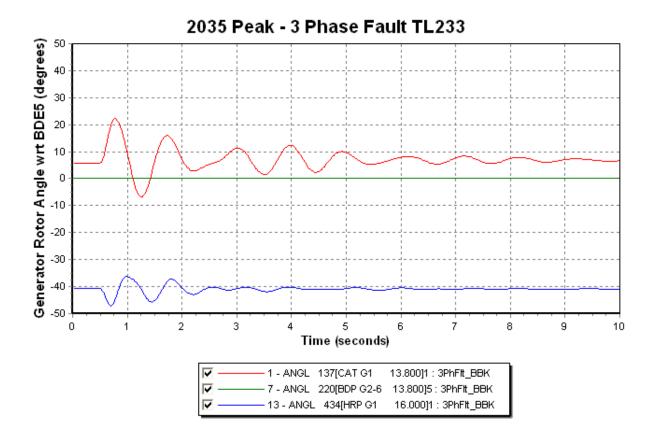

2035 Peak - 3 Phase Fault TL202


Case 6 – 3 Phase Fault at STB (6 cycles – Trip TL231)

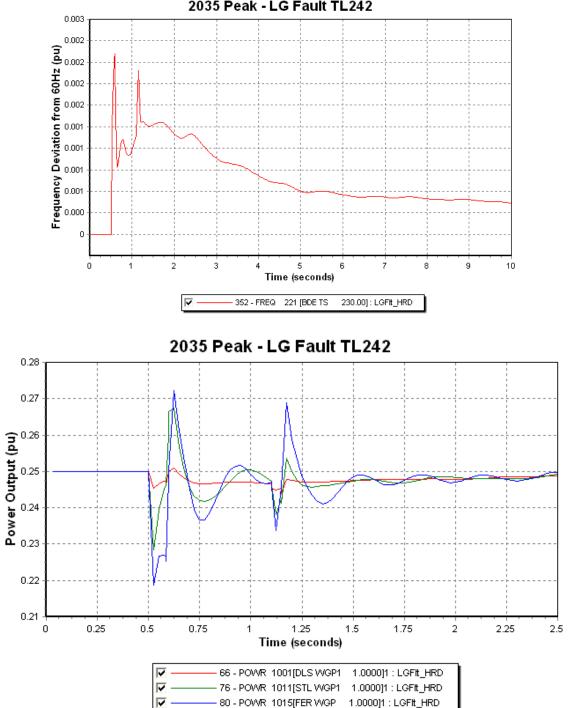

For this contingency a three phase fault has been applied on TL231 near Stony Brook terminal station for 6 cycles, followed by the tripping of TL231 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power output and voltage at terminals of 3 wind turbines and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

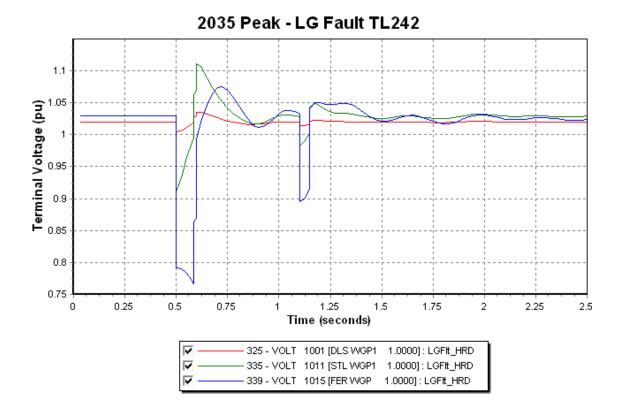

Page 154

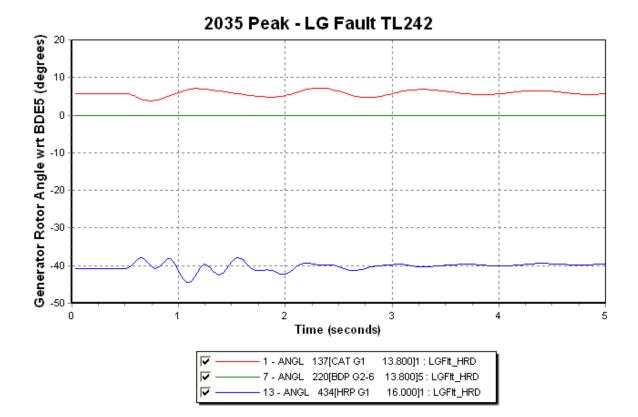



Case 7 – 3 Phase Fault at BBK (6 cycles – Trip TL233)

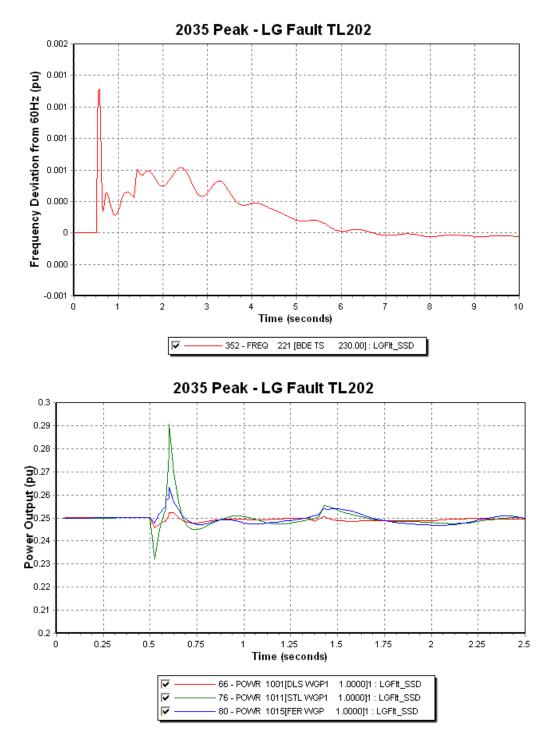
For this contingency a three phase fault has been applied on TL233 near Bottom Brook terminal station for 6 cycles, followed by the tripping of TL233 to isolate the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power and terminal voltage of 3 wind turbines and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

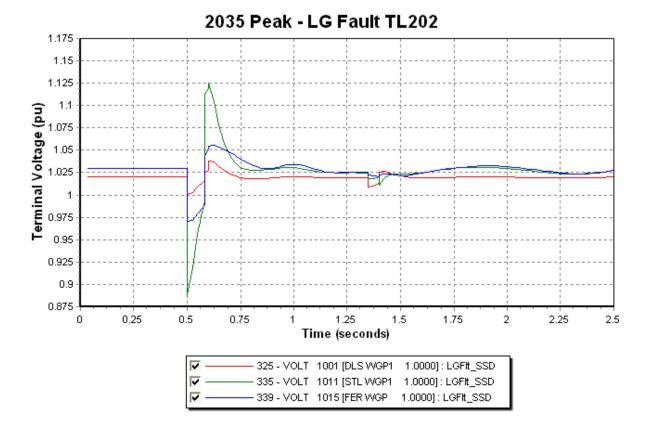

2035 Peak - 3 Phase Fault TL233

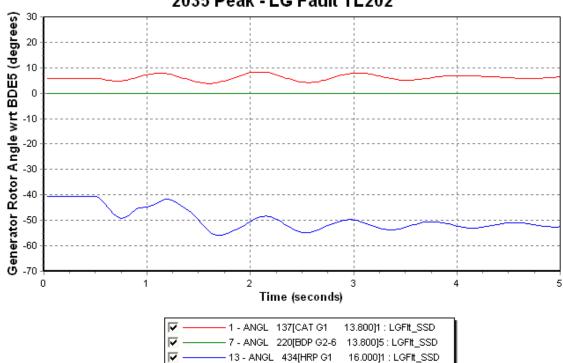



Case 8 – LG Fault at TL242 Near HRD

For this contingency a line to ground fault has been applied on TL242 near Holyrood Generating station for 6 cycles, followed by the single phase, then an unsuccessful reclose after 30 seconds. All 3 phases of TL242 are finally tripped after the unsuccessful clearing of the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power and terminal voltage of 3 wind turbines and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

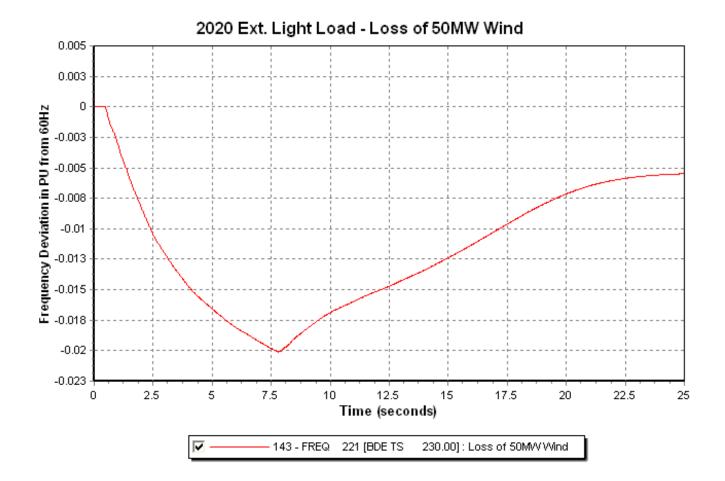






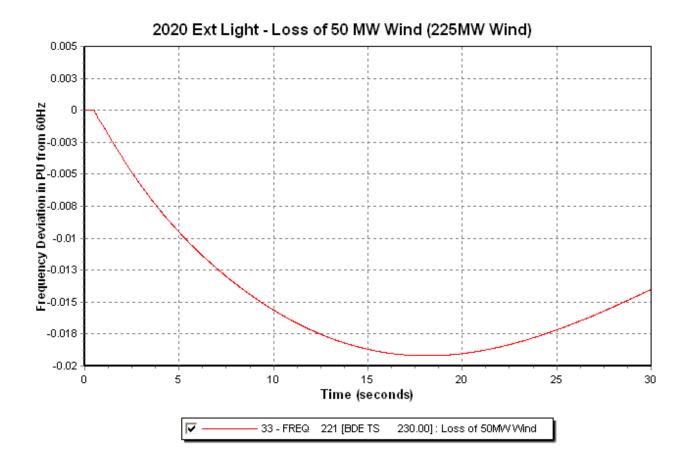
Case 9 – LG Fault at TL202 Near SSD

For this contingency a line to ground fault has been applied on TL202 near Sunnyside terminal station for 6 cycles, followed by the single phase, then an unsuccessful reclose after 30 seconds. All 3 phases of TL202 are finally tripped after the unsuccessful clearing of the fault. The results indicate that the system maintains synchronism and all wind turbines ride through the under voltage disturbance. The plots below show the system frequency, wind turbine power and terminal voltage of 3 wind turbines and select generator rotor angles relative to Bay d'Epoir Unit #5. The LVRT capability of the wind turbines enable them to ride through the fault condition.

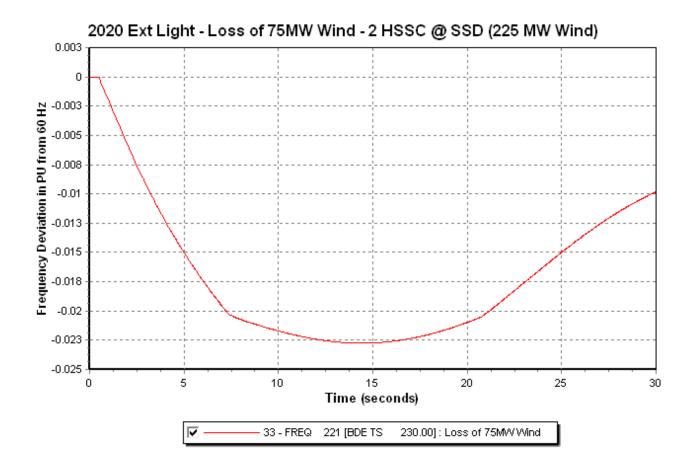


2035 Peak - LG Fault TL202

APPENDIX L – LOSS OF MULTIPLE WIND FARMS


Case 1 – Loss of Two 25MW Wind Farms

This event causes an under frequency condition that reaches a minimum of 58.79Hz. The frequency decline is arrested as a result of 9MW of load shedding due to the 58.8Hz under frequency load shed protection scheme. The following plot shows system frequency response over a 25 second time period.


Case 2 – Loss of Two 25MW Wind Farms with Added Inertia

This event causes an under frequency condition that reaches a minimum of 58.79Hz. The frequency decline is arrested as a result of 9MW of load shedding due to the 58.8Hz under frequency load shed protection scheme. The following plot shows system frequency response over a 25 second time period.

Case 3 – Loss of Three 25MW Wind Farms with Added Inertia

This event causes an under frequency condition that reaches a minimum of 58.79Hz. The frequency decline is arrested as a result of 9MW of load shedding due to the 58.8Hz under frequency load shed protection scheme. The following plot shows system frequency response over a 25 second time period.

