

Lowet cancitice frebeloh t
Naener oflo
Mhernd
if leat demend
Cheximirig cabinet Room
Cheximizing value of spined water
frimes egyind
 it puity "bs pupet?

- liagroor atr idle pary ir. He yees loontroer unea is quergi 200 mond a been thand 500 ugh to reffece if Buy d'Enpors - boo mus
- peparity t neele i- pummes Matlu a Nes Englad
megewalt hory

$$
\begin{aligned}
& { }^{4} \text { r.on por mat. }{ }^{\text {a }} \text { as } \\
& \text { - wrep perther }
\end{aligned}
$$

- 824 vagi - 874 megreet haris
dady Heewse it jeeb
- for x 5ubar $x 365$ dey
-15%. 80\% pquaty
λ down pretiones
- SM megertt ham for yeer \%. Im $\sqrt{2}$ terewelt boin
- ferewelt how " lethal Nipult

* Lever 3 tercoull hoim fo ell Marbiar folle porides of no reets vahl 2041 thea Clurchul thoung bede

Newfouholand Labrador

 Ahelles pees firt, deredof lowno fros

 - Ahis palues for Y. perio
 Hryost $\rightarrow 6_{00} M$

- mar mo go vil a Murt fera a sote nurene n drive by al as wis dipe glyper Me wul Hake ove, vable ol \rightarrow tiles
- Neat Enpua nous de bugher han Neat york

Cabinet Room
Othas - sole bith a marestapp ac Emere (voretr is fimenem)

- go it aline
- (referer puitar enclua erragemen al Enem It pel pries in N olf a fernchle rate find achecue perens lame NS t NB, PB W
Nes inglent hulemis sound (4.9 Tul (ys)
 Labrador

 $\rightarrow 468$ pinect ia Betrec bobredior
4.9 Kere welt |hor 2 for ficuthect
- 1 fr MS
- 2 for pile recele

 fatt rotus x ong giring it to trem

Newfoutholand Labrador
Therit me Liak, cabinefroom.

$$
\begin{aligned}
& \text { Huse line of fip pireme, } 180 \text { be } \\
& \begin{array}{ll}
\text { Clpenty } \\
\text { Capes } & 81.26
\end{array}
\end{aligned}
$$

- Aobree vrites 1. Ebrope a loger and

Cery mare dectricty

- de (doed (aver) better for lape lines
100% anser out I querthy Nothn
, rlas hase - 1íl. mbram
 for illes)
 - illat wo fet ribe fre trowiliar.

Newfor indand Labrador

Cabinet Room

- atter 35 yer ve pue pertion lave for $0^{\circ} 1$.
- mentimote perewel
, pay a se pomly for fouse in NS

Jox,' quethm $f o n$.

- mastomen lo vier fler perme
- lav of the patroct
- pineor 1 G Gives' deel
- enimmert ir mas
- panll poouet rebob
 doen"t angul, is hod thi 110 grea, cwirnherilly - frisedy, poped
 Ni pulder:-

Newfoulholand
 Labrador

- dured laploymel in porviay wion - S,610 perad a mare folic lic (Now Joh eso Mastes - no vele et 2200 fols
- fold preeper in, pelv the tesotty
- Whlu pendera fot don M iply to Niccoll 4 desen of Disp pecept lowed sties
- Impoymer - Webpadraicat Drum Noten pererine - peit $n n_{1}$ loniace - Loocis lont lad inplongest
- Oll repmeem krout pecor la provime \rightarrow very apodines eapigering nety lare

 Sout Cocect if habradir requiee 30 mgn Nomi foat if bolsedr < 12mod

\rightarrow Whl braert tw- 6b, in peme of por 1 feonome bentht and cutir poues

Whay n pooks in Nb gN NS pleque the fordr in ff. Fohn: \Rightarrow pau

NVE merher , 20000 kg m melat
\rightarrow infratrouture in Mece
\rightarrow pheplater of loi i pallume of ponit
\rightarrow Abey i Rimethtive perdook
\rightarrow Medoner reele
NB , proak kelreeio paildits the
porat bebrees pime bead

- pifie woll yo y a upgrado tanil 1 Lelree
- Helree dinai 1 - la
$\%$ ir pors NB mú bu yeer
\because is layes pore coul bieng for poer
- tr haer fore. coel biows wile hout doos

NS, nvirmentol fonl ixeese

- huypur a reewoilo prodect
- pree hod so puat oge in WE

\rightarrow goes to pherteides as preqeages
- Ne oll sum at y puese

lis aralinii I deel in $20 \% 0$
(1) expicied darty prove
(2) frovided lias of islest
buand n oll wile be 8100 in 20%

Jk, lope to panimize ho mut

- Martaber Ji Virir Cowrebris
$<$ Sher n olvernefive
ED. - Mas as liger the Hiborme

Wive - Wor does it neea to the melipayes?
A
-pete are gongy payuay - fat of uperatay
 comer or hol will pramere

(1) Xehaica (finaciel
(b) yory perfic, lemrinaed
(3) procd pera - Me doce it neert mo Athen?
(4) Jots l poortwo petivity
(b) Cionding Quebie/
- Cepacily pract in zoin ond perga. prual
is 2019

$$
\begin{aligned}
& \begin{array}{l}
2012-143 \\
2040
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Duerey Luchoh - 12,000 V.atlys }
\end{aligned}
$$

- foot It Noued an coest it we
fintadcial
- Aminei' deltr gingy mq $3 B$
 riting wh ir lige-tera "no right thay r (do.
- forape bour. gaither mentried
feremen fior al fielde, neorpaty. nat woutnest is fuslices
\rightarrow Lar \rightarrow pet for WR, ite h go we Hobion avertath
- Malierer looto med
 nall find s 5oo
 -16 is feat maives - a 3ob peat four wer bo year.
- Prshat lou - Nacer woll hadi

Nerrar - $15^{9} \%$ twat Coghangencen Poil

Wheter hant bempet LiAg - fontor the weres
vader Griale Oveber would beso bar be

New PRus egreemel
thos : nect wul firvine pake?
Q 30 \& in pead flos over so year

$$
-8300 h
$$

2040 - 500μ fer yoer
2022 - 800-g00 M y y yees des leet , poik

मिfir
it ye fur a 38 in the wer so yeer yoy gh 8303 bact.

detr persiciof - ${ }^{8} 100-8750$ range

\qquad
Next: ${ }^{\circ}$ Compermen phest
(2) Main grapl
vercubtroty Nricol-Gilmor beaw peruspory
(1) fireme
 Labrador

Cabinet Room
λ if fachorl brobynind for kl

(2) 4 hee vin portep 3 va

(4)

(3) Jy ar boid preannille liver f pary Goul Froed pown?
(6)

\rightarrow ant federd Loos fucrenter NILast reeds 6 1.41 for gove it Nt.

Q6.2 beeme 91.2 - Cophal apock
Wing porpect $\longrightarrow{ }^{1} 18$.
let $2^{4} 4.4$

Quen if we for Vpres thimbir Qames N, haver Phundill foret gong livopt ausbe we mill pelle - Len marar vi partare.

Goll tsteat r poos for parort
(1) VL veds fowe
(2) Meaterot falu on leaat, poot atherohos
(3) Pasionmopley friadly
(4) goors deft trendervery intion
(3) Whe Mrobilie fras peter ather borl
(6) Penomuc bereftr /eptreymat.
(1) treanmisn rybs to is

Oer $\mathrm{In}^{\prime \prime}$
Coview of NaNGaik report (rences
(1) do we nes the fones? har memel do ve reed?
(2) a his the leat pat ilfemation? If ong veet 300 gg thy denelop mP?
EA fend'r resmealetion if ind pender reves?
\rightarrow does Nasigary periws peet ller egriibmet."
\rightarrow tho "a Napggat as hat neer Aegl haper?
\rightarrow Mollendere, adpectivity ad experter 1 Novigap

- whire derelapmaki fred on wial, Metreel gas itc.

b) Are Naccol' easymphas Aypurted by fantral /empincel budeau/delo?

1) How do ue redue port for parimes is NL: - Gelerel loen selereter

- un tadud NL of delt?
- to beetiti tr lebicuir
- NS potay "fó paver cleper toer Mo NL
- in daly vie reelv nores for pper pawebiva Quebec?
- infritace of aviromety sives
- impirtuano or engynmet iciver

It we dri' otha bypes?

(f) do expyty mertek pxict? - is. V.s. (OAtamo

(1) has do ve lean to-30 yeer ton an nat denew for electricity whe mue be Neme?

$1.2<$ Coik i

$$
\begin{aligned}
& \text { Wboted Elead }<{ }^{9} 8.81 B \\
& \text { Mperaneeted ofleed } \frac{{ }^{4} 6.652 B}{92.158 B}
\end{aligned}
$$

 \Rightarrow becerreny of rate pogectide

"Pieratel whlity prectice (rowe of rapl es rete pripetios))

to espected forl défrevere betwee the for elternetives
fi 4.1, fey finduy

K.f. 22- "Noleri' fire fact rethodiong "ponsicher of phericy peoptel

K.f. 23 - Abeat vew syply, ne Esled int experenes a pepeaty dhats a Lors in en eleogy dehait is 1020."

K.5. is, hel pork fmeart uar reecneble

K.f. 42. Phor-term increaver in reel uhbencle eleetraty pefer bull Deews
 electricity leter fir furrcoanetel foleal dedine s reel form.

Executive Summary and Key Findings

Nalcor Energy has proposed a plan for the long term electricity supply for the Island of Newfoundland. This plan passed through Decision Gate 2 (DG2) where the Muskrat Falls with the Labrador-Island Link was chosen as the preferred alternative to meet future energy needs. Nalcor's Gateway Process is designed to ensure decisions are made at appropriate times, with the appropriate level of information, and at appropriate levels of expenditure. It focuses on key milestones to achieve gateway readiness and builds in "coild eyes" reviews at key decision points throughout the process.

Decision Gate 3 (DG3) - Project Sanction is the next step in the process. DG3 requires the advancement of project activities and work streams to a level of progression which provides the certainty needed to sanction or go ahead with the Project. Nalcor has retained Navigant to conduct an initial review using DG2 estimates. This report presents Navigant's findings related to Nalcor's recent DG2 decision. Navigant will provide a second report using DG3 project cost and schedule information as input to the DG3 decision.

Options Considered by Nalcor

Nalcor's DG2 decision evaluated a number of potentially feasible generation expansion alternatives for the long-term supply of electricity to the Island of Newfoundland. The alternatives fell into two broad categories: 1) Isolated Island alternatives, and 2) Interconnected Island alternatives. The optimal generation plan for each category was selected from the potential feasible alternatives in each category. The optimal generation expansion plan in each of these two categories is described below:

1. Isolated Island alternative would entail continued isolation of the Island power grid and the inherent supply and operational limitations associated with isolation. The key elements are:

- Development of limited renewable resources in the near-term
- Pollution abatement, life extension improvements at the Holyrood piant, replacement of the Holyrood plant, and
- Continued development of thermal power resources across the planning period 2010 to 2067.

2. Interconnected Islamel alternative would provide the capability to displace the Holyrood plant and meet the growth in provincial power requirements for years to come. In addition, this alternative would interconnect the Island with the regional North American power grid. The key elements are:

- Muskrat Falls generation facility, and
- Labrador-Isliand Link (LIL) transmission facility.

Nalcor's DG2 Results

Based on the assumptions, inputs and analysis undertaken by Nalcor, the Cumulative Present Worth (CPW, present value in 2010 of annual utility revenue requirements) for each of the two generation expansion alternatives is shown in the following table.

isolated Island

Interconnected Island

Preference for Interconnected Island
$\$ 8,810$
\$6,652
\$2,158

As shown above, Nalcor projects that developing the Interconnected Island alternative will result in lower utility costs for customers of $\$ 2.2$ billion in present value terms through 2067 as compared to the Isolated Island alternative.

Navigant's Independent Supply Decision Review Mandate

Navigant was asked to review the reasonableness of:

- The long-term Island supply options considered by Nalcor
- Nalcor's assumptions associated with Island supply options, and
- The process followed to screen and evaluate the supply options.

Based on this review, Navigant was to provide an opinion on:

- Whether the Interconnected Island alternative represents the least cost option that also fulfills the additional criteria requirements of security of supply and reliability, environmental responsibility, and risk and uncertainty, and
- The accuracy of the rate projections.

Navigant's Conclusions

Based on its independent review, Navigant has conciuded that the Interconnected Island alternative is the long-term least cost option for the Island of Newfoundland. Relative to the Isolated Island alternative, the Interconnected Island alternative is also expected to provide similar lewels of security and reliability, significantly reduced greenhouse gas (GHG) emissions and significantly less risk and uncertainty. The Interconnected Island alternative also provides a gradual decrease in real (adjusted for inflation) average wholesale electricity rates for the Island.

Navigant has concluded that Nalcor's consideration and screening of the supply options as well as the assumptions used by Nalcor regarding these options were reasonable and consistent with generally accepted utility practices. Nalcor's process to evaluate the supply options and estimate the rate projections under the two alternatives was also found to be reasonable and consistent with generally accepted utility practices.

Navigant has concluded that the CPW calculated by Nalcor for each of the generation expansion alternatives fairly represent the costs that would be incurred under the alternative supply futures. Thus, the $\$ 2.2$ billion preference for the Interconnected Island alternative, as estimated by Nalcor in the DG2 decision gate, is a reasonable estimate of the expected cost difference between the two alternatives.

To explore the sensitivity of the CPW difference between the two alternatives to changes in the supply options or assumptions, Nalcor and Navigant analyzed a number of sensitivity cases covering:

- different fuel price forecasts
- lower load growth
- additional wind generation
- introduction of carbon pricing
- aggressive CDM, and
- higher capital costs and the recently announced Federal Loan Guarantee for Muskrat Falls and the LIL.

All of the sensitivity cases resulted in a CPW advantage for the Interconnected Island alternative. This clearly indicates that the DG2 decision preference for the Interconnected Island alternative was robust given the underlying risk and uncertainty in key assumptions.

Key Findings

1. Nalcor's Gateway Process is a rigorous means of providing quality assurance for key decisions at crucial points in a project's lifecycle and is consistent with best practices.
2. The level and accuracy of the information used in Nalcor's DG2 Island Supply Decision was appropriate for the decision stage.
3. The 50 year generation expansion analysis period used by Nalcor was appropriate given the long-lived supply options being analyzed.
4. Nalcor appropriately included Muskrat Falls in Labrador and Island Fond, Portland Creek and Round Pond on the Island as hydroelectric generation in their generation expansion alternatives.
5. Nalcor appropriately excluded Gull Island in the Interconnected Island alternative because the purchase price for power from Gull Island would have to be 60 percent higher than power from Muskrat Falls under the same pricing framework.
6. Nalcor appropriately excluded other potential hydroelectric facilities in both generation expansion alternatives because the expected cost of power from other potential hydroelectric facilities would be approximately 20 percent higher than wind power.
7. Nalcor's exploration and analysis of alternatives for the LIL was rigorous and the transmission options developed and considered by Nalcor were reasonable.
8. LIL will be implemented using proven and reliable HVdc technology.
9. Nalcor's rejection of deferring the in-service date of the link until 2041 and using Churchill Falls as a supply option for the Island was reasonable given the higher costs and greater risks as compared to the Interconnected Island alternative.
10. Wind power is expected to be the lowest cost of the other renewable electricity supply options on the Island and Nalcor's inclusion of wind power in the Isolated Island aiternative was reasonable.
11. Provided the power system constraints identified in the 2004 wind integration study can be addressed cost-effectively, Nalcor's Isolated Island alternative could consider 100 MW of additional wind power in 2025 and a further 100 MW in 2035 when $\mathbf{i t}$ would be potentially expected to displace fossil fuel-fired generation most of the time.
12. No amount of wind generation could eliminate the need for the firm capacity provided by Holyrood or any replacement thermal facilities given the limited and uncertain capacity of wind generation.
13. Nalcor would have the capacity to integrate significantly more than 200 MW of wind only in the Interconnected Island alternative given the performance characteristics of Muskrat Falls.
14. Nalcor appropriately excluded biomass from both generation expansion alternatives because of the relatively limited biomass accessible through NL's existing forestry infrastructure.
15. Nalcor appropriately excluded soiar photovoltaic (PV) generation in both generation expansion alternatives because of Newfoundland's low insolation rates and the cost of power from solar PV installations.
16. Nalcor appropriately excluded wave and tidal generation in both generation expansion alternatives because of its unproven commercial viability.
17. Nalcor appropriately included the continuation of oil-fired generation in both generation expansion alternatives because it is a proven resource in the Island's generation supply mix.
18. Nalcor appropriately excluded natural gas generation in both generation expansion alternatives because natural gas is not commercially available on the Island and there are, as yet, no firm development plans to bring natural gas to the Island.
19. Nalcor appropriately excluded liquefied natural gas (LNG) generation in both generation expansion alternatives because there is no clear economic advantage to using LNG given the required capital for LNG-related facilities, coupled with the linkage of long term LNG pricing to oil.
20. Nalcor appropriately excluded coal-fired generation in both generation expansion alternatives because of its significant environmental risks.
21. Nalcor appropriately excluded nuclear generation in both generation expansion alternatives because of provincial legislation, project capital costs and risk factors.
22. Nalcor's forecast methodology is consistent with generally accepted usility practice and the base forecast for demand and energy growth is reasonable.
23. Absent new supply, the Island will experience a capacity deficit in 2015 and an energy
deficit in the 2020 timeframe
24. Nalcor could consider the impact of a longer term CDM initiative.
25. Nalcor's risk assessment analysis for Muskrat Falls and the Labrador-Island Link project
26. Nalcor's focus on time, tactical and strategic risks for the Muskrat Falls and LabradorIsland Link is consistent with best practices and provides a high level of confidence in the integrity of capital cost estimates.
27. Nalcor's estimated capital costs and escalation methodology for the various supply options considered in the two generation expansion alternatives was reasonable.
28. The fuel cost forecast used by Nalcor in its analysis of the generation expansion alternatives was reasonable.
29. The heat rates, operating and maintenance costs, operating lives, projected retirements, and outage rates used by Nalcor in its analysis of the generation expansion alternatives were reasonable.
30. Nalcor could consider how future environmental legislation, such as limits on the unit emission rates for fossil-fuel fired generation that could force the closure of Holyrood or the introduction of carbon pricing that would increase thermal production costs, would affect its supply alternatives.
31. The Muskrat Falls pricing approach used by Nalcor was appropriate and sufficiently well defined for the purposes of 1) estimating the Muskrat Falls power purchase price, and 2) informing the DG2 decision.
32. Nalcor's use of the Strategist model in developing the two generation expansion alternatives is consistent with generally accepted utility practice.
33. The CPWs for the generation expansion alternatives fairly represent the costs that would be incurred under the alternative supply futures. Therefore, the $\$ 2.2$ billion CPW preference for the Interconnected Island alternative is a reasonable estimate of the expected cost difference between the two alternatives.
34. The sensitivity cases run by Nalcor and Navigant capture the key risks in the assumptions for, and the impacts of potential refinements to, the generation expansion alternatives.
35. All of the sensitivity cases maintained the CPW preference for the Interconnected Island alternative. This ciearly indicates that the DG2 decision preference for the Interconnected Island alternative was robust given the underiying risk and uncertainty in key assumptions in the generation expansion alternatives.
36. The CPW preference for the Interconnected Island alternative is maintained after adding more wind or CDM to the Isolated Island alternative.
37. Current information, and specifically the updated May 2011 PIRA long term fuel forecast and the recently announced federal loan guarantee commitment, increases the CPW preference for the Interconnected Island alternative.
38. Relative to the Isolated Island alternative, the Inberconnected Island alternative is also expected to provide similar levels of security and reliability, significantly reduced GHG emissions and significantly less risk and uncertainty.
39. The criteria used by Nalcor in the Island supply decision were reasonable and consistent with generally accepted utility practices.
40. The Interconnected Island alternative represents a fundamental change to a more stable and certain utility cost structure for the Island by minimizing thermal generation and its associated fuel cost uncertainty.
41. Nalcor's wholesale electricity rate impact anaiysis accurately reflects the rate projections and provides a reasonable basis for assessing unit cost trends with respect to the two alternatives.
42. Short-term increases in real (before considering inflation) wholesale electricity rates would occur over the next few years under either alternative. Beyond 2017, the wholesale electricity rates for the Interconnected Island alternative decline in real terms.
43. Wholesale electricity rates are lower in the Interconnected Island alternative than the Isolated Island alternative except for a brief period at the end of this decade. This shortterm issue could be mitigated through ratemaking.

1 Introduction

Nalcor's Gateway Process is designed to ensure decisions are made at appropriate times, with the appropriate level of information, and at appropriate levels of expenditure. Nalcor's Gateway Process focuses on key milestones to achieve gateway readiness and builds in "cold eyes" reviews at key decision points inroughout the process.

The Lower Churchill Project Phase I has passed through Decision Gate 2 (DG2) which is Concept Selection. At that time, to select a preferred concept, Nalcor completed the appropriate activities and gathered the required information including field work, engineering and design, finalization of Labrador Innu Impacts and Benefits Agreement (IBA), environmental assessment progression, execution of water management agreement, completion of the Emera Term Sheet, financing preparation and economic analysis.

Decision Gate 3 (DG3) which is Project Sanction requires the advancement of project activities and work streams to a level of progression which provides the certainty needed to sanction the Project (e.g. ratification of the IBA, receipt of environmental permits and approvals, completion of detailed engineering and design, market confirmation of financing strategy, finalization of definitive commercial agreements, etc.). The intent of DG3 is to validate the concept selected before committing the largest dollars.

Independent reviews are carried out in accordance with established Nalcor decision-making processes with each Decision Gate. Nalcor has retained Navigant to conduct an initial review using DG2 estimates. This report presents Navigant's findings related to Nalcor's recent DG2 decision. Navigant will provide a second report using DG3 project cost and schedule information as input to the DG3 decision.

1.1 Newfoundland Electricity System

Newfoundland's electrical system is isolated with no connection to any other electrical system. This section describes the utilities, the generation, the transmission, and the load on the Island.

Island Utillties

Two regulated electric utilities serve the Isiand: Newfoundland and Labrador Hydro (NL Hydro) and Newfoundland Power. The utilities operate under the jurisdiction of the Board of Commissioners of Public Utilities of Newfoundland \& Labrador (PUB) which has regulatory authority over rates, policies, capital expenditures and the issue of securities.

- NL Hydro ${ }^{\text {i }}$ is a crown-owned electric utility which owns and operates facilities for the generation, transmission and distribution of electricity to utility, industrial and retail

[^0]customers in the Province of Newfoundland and Labrador. It is primarily a wholesale and transmission utility, and Newfoundland Power is its largest customer.
NL Hydro directly serves over 35,000 residential customers in 220 communities across the province. NL Hydro also operates 22 diesel systerns to provide service to 4,300 customers in isolated communities throughout coastal gress of Newfoundland \& Labrador. NL Hydro also sells power to three regulated industrial customers on the Island.

- Newfoundland Power, an investor-owned company, is primarily a distribution utility that sells electricity to approximately 86 percent, or over 240,000 , of the retail customers on the Island interconnected system. The Company generates approximately 7 percent of its electricity needs and purchases the remainder from NL Hydro.

Generation

As shown in Figure 1, the Island electricity system has a total generating capacity of 1,956 MW. Most of this capacity (78 percent) is operated by NL Hydro, with the remainder operases by Newfoundland Power, Corner Brook Pulp \& Paper, Star Lake \& Exploits River Generation, and non-utility generators (NUGs). NUGs include 54 MW of wind, which is sold to NL Hydro.

Figure It Newfoumdand Generation Capacity by Operator (MW)

Sourre: Nalcor. "Synopsis of 2010 Generation Expansion Decision" Exhibit 13b. July 2011.
As shown in Pigure 2, the majority of NL Hydro's generation capacity is hydroelectric, followed by the oil-fired Holyrood plant and oil-fired combustion turbines. The Holyrood plant Units 1 and 2 came on line in 1971, Unit 3 came on line in 1979.

Figure 2: NL Hydro Net ${ }^{2}$ Generating Capacity (NW)

Source: Nalcor. "Synopsis of 2010 Generation Expansion Decision" Exhibit 13b. July 2011.

Transmission

Figure 3 illustrates the Newfoundland and Labrador transmission system. The 230 kV transmission system east of Bay d'Espoir has a transfer limit of 365 MVA in the summer and 509 MVA in the winter. The existing transmission system is operating near full capacity and efficient scheduling of existing hydroelectric and thermal generation is at times a challenge. Approximately 67 percent of the Island demand is located east of Bay $d^{\prime} E s p o i r .{ }^{3}$ This, coupled with iransmission constraints noted above, creates voltage support requirements on the eastern part of the Island.

[^1]Figure 3: Newfoumdlamd and Labrador Transmission

Scurce: NL Hydro System Planning Department 2011.

Load

In 2010, the Island electricity system had a peak demand of 1,478 MW and an energy requirement of $7,355 \mathrm{GWh}$. Figure 4 presents Island hourly demand for 2010, showing substantialily higher winter energy use.

Figure efs Island Howny Demand, 2010

Blectricity demand is typically highest during the evenings in colder winter months. NL Hydro defines the peak period as the morning period from 7:00 a.m. to noon and the evening period from 4:00 to 8:00 p.m. during the four coldest months of December to March. As shown in Figure 5, peak day use is over twice as high as lowest day use.

Introduction

Figare 5: Minimum amd Maximum Eslamd Daily Demand, 2010

1.2 Options for Meeting Island Supply

Nalcor evaluated a number of generation expansion alternatives for the long-term supply of electricity to the Island of Newfoundland. The alternatives fell into two broad categories: 1) Isolated Island alternatives, and 2) Interconnected Island alternatives. Based on the DG2 estimates, the optimal generation expansion plan in each of these two categories is described below.

The cutcome of the generation planning analysis is a metric called Cumulative Present Worth (CPW), which is the present value of all incremental utility capital and operating costs incurred by the utility to reliably meet a specific load forecast given a prescribed set of reliability criteria. Where one alternative cost future for the grid has a lower CPW than another alternative supply future, the option with the lower CPW will be preferred by the utility, consistent with the provision of mandated least cost electricity services. From a financial planning perspective, the supply future with the lowest CPW will translate into the lowest overall revenue requirements.

Nalcor then used the Ventyx Strategist utility planning software tool to identify the optimal generation expansion plan for each alternative. Further details regarding the Strategist tool are provided in Section 4.

Q.2. Isolated Island Generation Expansion Plan

The key elements of the Isolated Island alternative are the development of limited renewable resources in the near-term, pollution abatement, life extension improvements at the Holyrood

NF. Noeden
(1) rieng foat of onl - pre ehtriwtu for Mil paing becercte?

(a) $\int 1$ an C a
(a) Las do vie get five islas of hetel?

(b) fouk of electricuty th hay in NS?

 ndy h iled?
fo Ne wi Ned 800 gqo
\Longrightarrow foes Ni Nea the pave? It n, slea?

Phéring ti leverficity fates
fresel $<$ St. Tolu's 9.584 \& kut |hanl 111
bare fertowes ploge $<{ }^{\text {" } 15.69}$
10.99 - Woh for apar dho
vee 1000 kowh of eleftriaty (100.00)

- Coarbltetar <14.51
r Helifor <13.62
$<$ Maretro <11.02
 - Dodect Lexis. HíC rebate a prizcul worta a Plo
bene rete ${ }^{\circ} 10.401$ a Wwh
buic coalnit plog -15.62
* new to rpare pleatr of July il

$<$ cepacty o 46 hw 保

\angle poer I al is procel poed palcuaty 6
2014 - one Vole face a folyind wole arblue pued Wate (HP6 HW) mos: fowe $\left(\frac{1}{3}\right.$ it evergt meele $)$ (
long fhashay wh reqane 92 kw finvolly pree of al ${ }^{\text {t }}$ ve i wore ol ci Alyprod

$$
\begin{aligned}
& \begin{aligned}
\text { Pacs }_{2}<2000<220 \\
2010<290
\end{aligned} \\
& 1011<400 \text { (b) } N \text { do pretrot) } \\
& 2025 \text { - } 435 \text { - oh wiluel folie } \\
& \text { - } 405=4 \text { mikiok fale }
\end{aligned}
$$

10
(1) of t dela doker vewer inenfratiy sily 1 netreare
di) dotuer fer bant versi Wuh
(3)-Higroot vige
(4) Pathir feeveen or chas pe aresy truebothes

Nomber 引ll
(1) límard for power
(2) LeAt-Cost offor \qquad - Comundicatiods-
(3) Fier \qquad of 011 \qquad
(4) Eningy Mamerts
(5) Fanc $\overline{\text { dKAT }}$
(b) $600!$

A1914 \qquad

- gerathy Lorsines i Nolcor

CIMFP Exhibit P-01524
\rightarrow NL neele fover by 2ovs - hémide Poure costied poatita tha vemise

 la) polvercel) " lond"

240,000 shferuer be fervece $<$
< Gowletin verui Runtonet growli, Move fentower

- Wrhet hae i, plectric heek / Nf foner - bil. or islad
- uatomal gouth M pay for mecuting

The wreary dr gonst uhlity gopht (wase domascul)

Lat lokeast.
 a prosiar ver fo yeer

Now look M. Atí fviolke
$\angle V$ Vale 5 ore, 92 meatole

- inturtrial treas lub defamines indurtriol bte
factals Affécing limado
(1) Leonsue gowin, leonowe indector, reldeday foll

CHomest \& Gol ner dowe quarcal loes
\% hove homes, himes ore biges,
(2) Meefrichy we ce hate

- Cower fenle per hane
- increnalay mother pare Ior phetric hel (9) delvor ip las
<NP Lower do doen reeceithy - 5 year

 loed y io madel If ho wistes - boleng elc inater lys deven).
2.20 - Noer dehat $($ fori $)=$

 be and h poride pespal her haiveres be loosk fre wes N pote $1 /$ yees. 5o merwall gea (diecel)) May
phy ghe in hang
 p. Preer 11,2017 ,

$+0.9 \times 60$
fatton ficiles, par playg of pascaas

Faruber will ollowith pens

Or epruptiar de Mk sucuder a pletas chary Mumiar folle oll nol fure aftreabue.

- Ainemary lots (dent sesvieing

8.4% refork nf
V

1. 1\% Reduction in IRRMOE on MF and MIL
a. Comblned - \$14 MiNh reduction
b. MF - \$13 MWh
c. LILK - 霉 M M M
2. 2\% Reduction In IRPNROE on MF and LIL
$\$ 116$ MWh
3. Federal Loan Guarantee

Nrámber $1 / 11$
Wavid vardy's articli

17. quatar pasel bo er Peres
1.9- how wet pous u rectel a ho istexd"

If thas, eltesnetver b Ms
Gha A MF

\rightarrow ma rever las inereas in alreat lay doly

Whtty Abicur

 energ poley'

Et lene lepar, f16.1

- 19 - "How wet fover is reeded it pre Trled?"
- fforer, dhecutive farmee Ap fores
A.12 - ir wheding ercomementi la loe negitiotet of dov.

Dopor $k=$ potul

 mopindar Malyai

PREPARED FOR ACTION CANADA

Making Best Use of the Lower Churchill:

The Muskrat Falls Development

David A Vardy

8/31/2011

This essay was prepared by David A Vardy for Action Canads. The essay examines the policy context in which the Lower Churchill can best be assessed from a national ard provincial context, along with the options to be considered in achieving energy security

Maling Best Use of the Lower Churchill

1.0 Introduction ${ }^{1}$ and Terms of Reference

This essay was commissioned by Action Canada, who asked the guthor to deal with the Lower Churchill development, including the following issues:

- How much power is needed on the island?
- What are the potential sources of power for the island?
- Is the best aithernative to transmit power from Musigat Fails to the islind?
- What are the other potential uses of Lower Churchili power (including Gull Island)?
- Is the current proposal the best use of the Lower Churchill potentiai?

A draft was forwarded on August 15, 2011 and this final version is submitted on August 31, 2011, incorporating revisions and expansions requested by Action Canada.

This essay will deal with the Lower Churchill hydroelectric developments in Labrador, downstream from the large Churchill Falls project which was completed in 1976 and most of the power of which is sold by Churchill Falls (Labrador) Corporation to Hyiro Quebec under contractasil obligations that end in 2041. There are two proposed generation frcilities on the lower resches of the Churchill River, one at Gull Island and the other at Muskrat Falls. The Government of Newfoundland and Labrador recently announced its plan to begin development of the smaller of these two hacilities, located at Muskrat Falls, just 18 km upriver from Happy Valley-Goose Bay. The proposed Muskrat Falls chacility is rated at 824 megawatts (MW) and 4.9 million megawati hours (MWh) of energy per year. The combinsd capacity of Gull Isizmd and Muskrat Falls is $3,074 \mathrm{MW}^{2}$ while the combined energy is 17 milion MWh of electricity per year.

The Muskrat Falls project has been selected as the frrst of the two facilities because its smaller size is perceived to be a better fit for the Province's energy requirements. The Muskrat Falls facility, if constructed, will serve the energy requirements of the Island of Newfoundland, with surplus energy to be sold to Emera Energy of Nova Scotia and other power users in Eastern Canada or the Eastern United States. The Gull Island facility, according to the Province's energy plans, will be developed latex, possibly for sale west, using transmission lines in Quebec or using an additional transmission line across the Strait of Belle Isle and the Cabot Stratt, through the Maritime Provinces. The preferred sequencing of these two projects will be discussed below in the context of the recently released Joint Panel Report on the Lower Churchill Hydroelectric Project, in which Report the term "Project" embraces both the Muskrat Falls and Gull Island generation facilities.

2.0 Role of hydroelectric power in Canada

Canada depends heavily upon hydroelectric power, compared with other industrial nations. It is second in the worlid in hydroelectric power generation ${ }^{3}$ More than 60% of Canada's electricity production is from renewable hydro generation while 24.9% comes from thermal generation. ${ }^{4}$ Today, 11.5% of the world's hydropower is generated in Canata. There remains an estimated $163,173 \mathrm{MW}$ of

[^2]undeveloped hydro potential in Canada today, mostly in the North ${ }^{5}$ More than $10,000 \mathrm{MW}$ of this undeveloped hydro potential is in Newfoundtand and Labrador. ${ }^{6}$ Quebec and British Columbia together have $80,000 \mathrm{MW}$ undeveloped.

Canada is a major exporter of electric power to the United States. Gross exports in 2008 were 55.7 million MWh white gross imports were 23.5 million MWh , resulting in net exports of 32.2 million MWh. ${ }^{7}$ This number corresponds roughly to the energy that is sold to Hydro Quebec by the Churchill Falls (Labrador) Corporation (CF(L)Co). The high level of Canadian electric power export calls for a Fighly reliable continental transmission system, with open access.

Decisions regarding investment in new capacity must recognize the impact of generation upon globai warming. In Canada, there has been a federal commitment to reduce national greenhouse gas emissions by 20 percent below 2005 levels by 2020, and 90 percent non-emitting electricity generation by $2020{ }^{8}$ Such a commitment favours hydroelectric investment along with investment in other renewable sources.

Investment in the electricity sector is required in order to meet future demand and to replace aging infrastructure as well as to reduce greenhouse gas emissions. Such investment will lead to rising prices as undeveloped generation projects are normally more costly than those already developed. Planners normally select those projects where energy costs are lower, unless there are other compensating factors, such as inappropriate scale, in relationship to the load to be served.

The supply mix has to recognize the needs for both baseload power and for peaking. Some energy sources are better suited to meeting base demand while others are suited to supply peak demsind. Some energy sources, such as solar and wind power, are intermittent and require energy storage, posing greater challenges than those presented by hydroelectric, nuclear and thermal power sources. However, water reservoirs can often be used to store potential energy. Variations in hydroelectric production from such reserveirs can be used to compensate for variations in energy supply from oflhar renewable sources, such as wind and solar energy, thereby turnimg these reservoirs into multi-purpose energy storage.

The electric power system should be designed with an optimum mix of energy sources which will minimize cost and achieve environmental and sustainability goals. Playning for future growth must also deal with energy conservation and with the design of a pricing system that will provide information to the consumer as to the full cost of his/her decisions to consume energy. Canada enjoys relatively low cost power and Canadian utility pricing to domestic and industrial consumers reflects these lower costs. However, an efficient allocation of resources should refiect the incremental or marginal cost of energy as well as the competitive advantage which gives us relatively low cost hydroelectric power in Caneda.

2.1 Hydroelectric resources of Labrador, including Churchill Falls

The infamous Churchill Falls contract is a prominent feature in the social and economic landscape of Newfoundland and Labrador and is a major influance in the Province's energy policy. The loss of economic rent from this undertaking is perceived to be egregious. The Churchill Falls power contract reaches the end of its 65 year term in 2041. This contract has been the source of much controversy in light of the fact that the energy is sold by the Churchill Falls (Labrador) Corporation to Hydro Quebec, at the border. The option of dealing with customers outside Quebec wrs not available, and Hydro Quebec was placed in a monopsony position. The general view in Newfoundland and Labrador is that the power contract is one-sided, providing large benefits to Quebec and few benefits to Newfoundlanders and Labradorians. The price paid by Hydro Quebec is very low over its 65 year term and declines for the last 25 years, which compounds the intrinsic inequity of the contract during a time of
${ }_{6}^{5}$ (2), p. 22.
${ }^{6}$ (14), pp.35-40.
${ }^{7}$ (3), p. 18.
${ }^{\text {8 }}$ (3). p. 57

Making Best Use of the Lower Churcinill
escalating energy prices. The power contract will have run its course in 2041 and all of the options will then be back on the table, including the use of Churchill Falls power for meeting domestic requirements, as well as for revenue generation by export from the Province of power surplus to the its requirements. The Province's Energy Plan of 2007 fixed its sights on the post-2041 time horizon in examining the options for oil and gas and electric power development.'

The Government of Newfoundiand and Labrador attempted to utilize the courts to overturn the power contract and to recall additional power through two different initiatives. The first case involved gn atternpt to recall additional power under the provision of the lease of water rights which stated that power could be recalled where it was economically feasible to do so. This case taok 16 years to resolve. The Supreme Court of Canada ultimately upheld the decision of the Newfoundiland Court of Appeal that it wasn't economically feasible in 1988, so that attempt failed.

Becausc of the iength of time it was taking to get a finai determination of this case, the Government decided to pursue another approach, which would have had the effect of taking broik the lease of the water rights through The Water Rights Reversion Act. The Govemment referred the constitutionalitity of this Act to the Newfoundland Court of Appeal. It was ultimately heard by the Supreme Court of Crnacia, which decided in 1984 shat it was unconstitutional because it aftempted to interfere with the power contract, which gave the right to deliver power at a place outside the territory of the Province and the Province had no authority to legisilate outside of tis boundaries.

The Churchill Falls Power Corporsion, CF(L)Co, which operates the power plant at Churchill Falls is owned by Noicor and Hydro Quebec, with majority ownership held by Nalcor. The Upper Churchilli is the largest generation facility in the Province, producing $5,428 \mathrm{MW}$ of power and 34.0 million MWh of energy. With the exception of 1) the 300 MW which has been reserved for use in the Province, depending upon provincial requirements, 2) the block of 225 MW which was diverted from Twinco to the Churchill Falls project for use by the iron ore industry in Labredor and 3) 682 MW which is being sold to Hydro Quebec on a seasonal basis ${ }^{10}$, the full output is sold to Hydro Quebec under a long term contract for a price declining from 1976 to 2016 and which is currently $\$ 2.50$ per MWh. It will decline to $\$ 2.00$ per MWh for the remaining 25 years, from 2016 to the conclusion of the power contract in 20411^{11} To put this in context, the rate charged for domestic power users in St. John's is $\$ 104.07$ per MWh ${ }^{12}$

When the Province's hydroelectric production is compared to population size, the $80,000 \mathrm{MWh}$ per year per 1,000 people in Newfoundland and Labrador is higher than in many resource-abundant jurisdictions, higher than Iceland ($30,000 \mathrm{MWh}$) and Norway ($25,000 \mathrm{MWh}$) and higher than Manitoba $(30,000 \mathrm{MWh})$ and Quebec $(25,000 \mathrm{MWh}) .{ }^{13}$

The Energy Plan calls for the transfer of funds from non-renewable energy sources to renewable sources through the development of Gull Island and Muskrat Falls es welil as other hydroelectric and wind energy projects. For the Province as a whole 85% of total energy output is from hydroelectric sources. However, this number is heavily influenced by Churchill Falls and very little of the Churchill Falls energy is used within tife Province. For the Isiand, which is not yet electrically connected with Labrador, the percentage of total energy capacity that was hydroelectric in 2007 was 65%, when the Energy Plan was published; 35% came from thermal power. Since then, two small wind powered projects have been developed but thermal power continues to play a major role, particularly the 490 MW oil fired plant at Holyrood, which is on the Avalon Peninsula, close to St. John's

[^3]
Making Best Use of the Lower Churrhill

In addition to the two sites on the Lower Churchill there are a number of other potential developments in Labrador. Millan (1974) ${ }^{14}$ estimated a potential of over $9,000 \mathrm{MW}$, not including five interprovincial rivers whose headwaters are in Labrador but which run through Quebec's North Shore on their way to the St. Lawrence River. These are the St. Paul, St. Augustine, Little Mecatina, Natashquan and Romaine Rivers, which have a combined potential of approximately $3,430 \mathrm{MW}$. ${ }^{\text {IS }}$

In order to develop the full potential of these projects both the Provinces of Quebec and Newfoundland and Labrador must come to an agreement on water management, dealing with headwaters and river flooding. However, this has not stopped Quebec from embarking on a major new project which will be almost twice the size of Muskrat Falls. Hydro Quebec has commenced work on a $\$ 6.5$ billion facility on the Romaine River which will produce 8 million MWh of energy. This facility, with four dams, will be built on Quebec's Lower North Shore by 2020.

Nalcor Energy (Nalcor) is a provincially owned energy company, a crown corporation, which in turn owns the Newfoundland and Labrador Hydroelectric Corporation (Hydro) as well as CF(L)Co. Hydro operates most of the generation capacity on the Island along with the high volkage transmission lines. On the Island, Hydro is the wholesaler which sells to the retailer, Newfoundland Power (NP), fully owned by Fortis Inc. NP operates the distribution lines and deals with househoid consumers and general service commencial and industrial users, charging rates approved by the regulator.

In Labrador, Hydro is responsible for both the gereration and transmission of power and sells power without the intermediation of Newfoundland Power or any other distributor. Hydro serves customers on the interconnected Labrador system and also operates a series of generating systems in isolated communities in Labrador and on the Island, fueled primarily by diesel generators. Rates charged by Hydro to intercomnected Labrador customers are lower than those charged to interconnected Island customers, recognizing the lower cost of service in Labrador, where the power is supplied from Churchill Falls, drawing from the recall block of up to 300 MW . On the other hand, the rates charged to customers in isolated communities on the Labrador Cosst, and on the Island, are higher, due to reliance on diesel fuel, given that the cost of connection to the grid is prohibitively expensive.

The development of the Upper Churchill was undertaken by a private company, Brinco, not by the Province, and the shares not owned by Hydro Quebec were acquired by the Province in 1974, along with the water rights for downstream development, so as to facilitate the development of the Lower Churchill.

In 1978 the Province signed an agreement with the Federal Goverument to create the Lower Churchill Development Corporation (LCDC), which is 51% owned by the Province, 49% by the Federal Government, to develop the power sites on the lower Churchill River at Grall Island and Muskrat Falls. The LCDC is currently inactive. However, the Province has approached the Federal Government for a ioan guarantee for the Muskrat Falis facility, which was the subject of a recently signed MOU. Negotiations have commenced to work out the details of the guarantee. It would not be surprising if the Federal Govermment were to seek some form of management control to protect and limit their financial exposure. It is not known whether reactivation of a structure similar to LCDC might be an option for them.

Both Hydro and NP are regulated by the Board of Commissioners of Public Utilities of Newroundland and Labracor (the PUB), which approves energy rates through the use of an allowed rate of return on rate base. Capital budgets for both utilities are also subject to review by the Board. The Lower Churchill projects (at Gull and Muskrat Falls) have been exempted by Order-in-Council from the jurisdiction of the PUB. However, the Provincial Goverment has made a reference to the PUB pursueme

[^4]to Section 5 of the Electrical Power Control Act (EPCA). The reference question is whether Muskrat Falls represents "the least cost option for the supply of power to Island Interconnected Customers over the period 2011-2067 as compared to the Isolated Island Option." We will retum later to this reference and the limited mandate it gives to the PUB.

4.0 Proposal for Muskrat Falls Development

The proposed Muskrat Falls development calls for a dam at Muskrat Fails, with four turbines generating 4.9 million MWh of energy per year from a capacity retad at 824 RMW. This project was announced jointly by Premier Danny Williams of Newfoundland and Labrador and Premier Darrell Dexcer of Nova Seotia on Noveribler 18, $2010{ }^{16}$ The project has ive components, the Muskrat Falls generating plant, the transmission line to Churchill Falls and the Strait of Belle Isle, the Strait of Belle Isle crossing, the Island transmission system to Soldier's Pond (outside of St. John's) and the Cabot Strait crossing, estimated to cost a total of $\$ 6.2$ billion (see map in Figure 1). The generating plant will cost $\$ 2.9$ billion, the Labrador-Island link will cost $\$ 2.1$ billion, and the Maritime Transmission Link is expected to cost $\$ 1.2$ billion. Completion will take approximately six years. The subsea line across the Strait of Belle Isle will be 30 km in length while that from the Island to Nova Scotia across the Cabot Strait will be 180 km.

Emera Inc. (Emora), which is an emergy and services company serving Nova Scokia, will contribute 20 per csnt of construction costs amd provide transmission to Nalcor Energy (Nalcor) across the Maritime Link and through Now Seacis. Nalcor will provide Emera with approximately one milition MWh per year (Nova Scotia Block) or 20% of the energy from Muskrat, for a term of 35 years. ${ }^{17}$

The rationale given for the project at the press conference was the closure of the 490 MW Holyrood thermal plant and the elimination of its GHG, along with stabilization of power costs by avoiding continued exposure to the price volatility of oil-fired thermal generation. The development of Muskrat Falls would avoid epproximately 96 million toanss of emissions by 2065.

The project will generate large scale employment benefits for the Province, the Atlantic region and the country as a whole. First consideration for jobs in Labrador will go to the Labrador Innu as outlined in the New Dawn Agreement, then to Labrador residents, and then to residents of the province generally.

Initially, displacement of Holyrood energy will absorb 40% of the energy from Muskrai Falls. In addition to the commitment of 20% to Nova Scotia the remaining 40% will be available for sale into New England or the Maritimes or else held in reserve for the industrial requirements of Labrador.

Naicor will be provided use of Emera's transmission rights to transmit power through New Brunswick with Nalcor paying the associated transmission tariff when used by Nalcor. If these rights cannot be acquired or extended, Emera will purchase the power Nalcor would have sold through New Brunswick, Alternatively, at Nalcor's aption, Emera will provide Nalcor with the opportumity to acquire or use 300 MW of firm transmission if proposed Nova Scotia-New
Brunswick transmission line is constructed

The Government of Newfoundland and Labrador has reached an agreement with the Innu Nation with respoct to land claims along with impact and benefits. The agreement covers resource royalty sharing and management of lands. An Upper Churchill redress agreement has also been reached with the Innu Nation.

The reference review being undertaken by the PUB will not conisider the potential revenues from the agreement with Emera nor will it consider the costs incurred as part of the Term Sheet to supply
${ }^{16}(21)$.
${ }^{17}$ (10)
${ }^{18}$ (10)

Malcing Best Use of the Lower Churchill
power to Nova Scotia. Instead the PUB will examine Muskrat Falls solely oan the basis of its ability to supply Interconnected lsland customers at a lower cost than the Isolated Island alternative. The Gull island project, as an alternative to Muskrat Falls, is not covered in the reference. The dexdline for the PUB reference is December 30, 2011.

4.1 Envirommental Assessments

A joint federal-provincial environmental assessment panel has completed hearings on the Lower Churchill generation project. Their report, released August 25, 2011, is a comprehensive review of the Lower Churchill Project, defined as comprising both the Gull Island and Muskrat Falls facilities. This packaging of the wo recilities did nor preclude individuai msessments of ewch. Transmission lines were not included in the Project. The provincial and federal governments will make the final decisions regarding the Project approval. The Terms of Reference issued by the Ministers required the Panel to assess the environmental effects of the Project, including:

- considerstion of the need for and purpoee of tha Project.
- alternatives to the Project and alternative means of carrying out the Project;
- the environmental effects of the Project, including accidents and malfunctions:
- cumulative effects, mad the significance of these effects;
- measures to reduce adverse effects and enhance beneficiai effects; and
- monitoring and follow-up.

The Panel decided that it would assess Muskrat Falls and Gull Island separately with respect to alternatives, emergy requirements and economic considerations, even though their mandate combines the two as a single Project. This separate assessment is based on the fact that each component is subject to separate sanction decisions.

The panel approached the energy security issue with the understanding that the Province's lomg term energy security is assured and that energy requirements beyond 2041 will be addressed through access to Churchill Falls power, once the power contract has expired. The main benefit to finture generations will accrue to the rest of North America. The Province's ability to capitalize on these benefits, through revenues from power sales, will depend on the future of electricity market demand and supply as well as on achieving access to these mantets.

Long-term energy security would be among the key benefits to future generations. The Panel obsserves that because of the existing Charchill Faills project, the long-term energy security for the province is already secure after 2041, so the main benefit to fusture generations in this regard would accrue to the rest of Nord. America. Another potential benefit to future generations would be the predicted large-scale provincial revenues. Whether and at what scale these would be realized would depend on a number of factors, including whether the whole Project proceeds, whether economic access to marhets can be realized, aned the future of electricity demand and supply. ${ }^{19}$

The panel has considered Muskrat Falls and Gull Island together as a single project, possibly with overlapping scheduies or eise with a hiatus in between. This provides the opportunity for sales outside the province to cross-subsidize the price of power to donnestic consumers, if such sales are availabie. Leck of market access, or its high cost, may make such external sales infeasible or unattractive.

If the Muskrat Folls facility were to proceed by itself because market access could not be resolved in a maxwner that makes Guall Island economically attractive, there is a rist that the Project would not generate sufficient revenues to cover the various mitigation and compensation commitments

[^5]and needs associated with the Project, or the revenues for the Province necessary to ensure longterm economic benefits, and that it would result in higher power rates for the Island of Newfoundland than would be the case without it. The Panel has therefore recommended a formal financial review and an independent alternatives assessment to resolve these unceriainties and allow for a moore accurate assessment of the economic rishs. ...

Ff the whole Project proceeds, the Panel has reasonable confidence that the adverse economic effects and risks would be outweighed by the potential for largescale aconomic benefits. Economic benefits during construction would be centered on jobs and business opportuantiles, while the dominant economic benefit during operation would arise from the potential revenues the Project would generate for the Province. The financial review recommended.by the Panel (Recommendation 4.1) should give government decision makers a better urderscourdiugg of whether these net ccomomic benefis would materialize.

The resuliss of the alternatives assessment recommended by the Parsel (Recommeradations 4.2)may affect whether a government decision to permit the Mustorat Falls facility to proceed should be mecde on the basis of a separase sanction decision by Nalcor, or whether other options, which might incluade cammitments by Nalcor to a Gull Island (project) only or a joint saraction decision for Muskrat Falls and Gull Lslard, should be consideread

The Panel believes that only after the financial review and alternatives assessment have been completed would government decision makers be in a position to carefully consider whether the Project, under the various scenarios contemplated by Nalcor, would have a wet economic benefit, and at what scale. "20

In its Recommendaxion 4.2 the panel describes the terms of reference which should be covered by an independent analysis of alternatives to meeting domestic demand. They ask
why Nalcor's least cost alternotive to meet domestic demand to 2067 does not include Churchill Falls power which would be available in large quantities from 2041 or any recall power in excess of Labrador's neeeds prior to that date, especially since both would be available at near zero generation cost (recognizing that there would be transmission costs involved); ${ }^{2 I}$
The Joint Panel recommends this question should be included in the terms of reference of the independent analysis, along with the following questions and issues:

- Whether Gull Island power should first be developed, given that it has a lower per unit generation cost than Muskrat Falls?
- Whether Nalcor considered developing technology, as compared simply with current techiology?
- Whether Nalcor's assumptions regarding the price of oil till 2067 are robust and realistic?
- Whether Nalcor's estimates of domestic demand growth are realistic?
- Whether Nalcor has placed sufficient emphasis upon demand management programs in light of information about targets set and expenditures incurred in other jurisdictions?
- Whether Nalcor should consider introducing disincentives to the inefficient use of electric space heating?
- Whether Nalcor has placed sufficient priority on wind power, in light of the suggestion by the Helios Corporation that an 800 MW wind farm on the Island should be considered as an alternative to Muskrat Falls?

[^6]Meing Best Use of the Lower Churchill

- Whether conversion of the Holyrood thermal plant to natural gas as an alternative to Bunker C should be considered?
- Whether further exploration of the potential for renewable energy sources on the island (wind, small scale hydro, tidal) would be a viable option?
The panel also believes that the plamning approach of defining demand requirements and seeking the lowest cost generation solution should be replaced by what is known in the public utility fraternity as integrated resource planning (IRP). IRP looks at both demand and supply options and places more weight on demand management than least cost supply planning.

The panel returns to wind power and demand side management in their recommendation 17.4 where they say as follows:

From a greenhouse gas emissions perspective, the Project would offer significant advantages over fossil fuel-based energy sources, and be generally comparable to wind, other hydro and nuclear power. Conservation and efficiency measures would rate better than the Project. From a general biophossical perspective, large-scale hindro again terdiss to paite better than fonsil fuel based energy, but dioes not rate ass well as wird or conservation and effolency measwres. ${ }^{22}$
Both Nalcor and the Panel are of the view thatit the two projects are lifely to be benefficial in they are sequenced, with an overlap in construction. The Pamel supported this approwch largely because lessons learned and capacity builk from construction of Muskrat Fails can be applied to Gull Island. If Muskrat Falls proceeds on its own, in order to meet the Island's energy needs, it is less ciear to the Pamel tixit the Project will result in net benefits to the Province as a whole or to Labrador, as a region of the Province.

The Panel recommends a wide range of measures to mitigate the adverse environmental, social and economic impacts. The Panel conciudes that the social effiects in Labrador could likely be fiulty mitigated andi could be expected to diminish when construction is finished, but the reduced envirommental effects would stiil be negative for Labrador. The regional distribution of benefits is a big concern for the Panel, particularly the impsct upon Labrador. The full Project (Muskrat Falls and Gull Island, with overlapping construction) would likely deliver net benefits to the Province as a whole but net benerits to Labrador will depend upon the policy decision to reinvest revenues in the Labrador component of the Province.

An environmental assessment of the transmission line has not yet started. The Labrador-Island Transmission Link project is currently undergoing public and government review of 14 topic-specific Component Studies (prior to submission of Nalcor Energy's Environmental Impact Statement (EIS)).

The environmental assessment for this project does not include the Maritime Transmission Link, for which no EIS has yet been filed.

5.0 Interprovincial transmission through Quebec

Hydro (and Nalcor) has had difficulty in gaining access to wheeling rights for Churchill Falls power through the high voltage transmission lines of Hydro Qusbec and remains in dispute with Quebec about the terms under which Lower Churchill power can pass through Quebec. This has led the Government of Newfoundland and Labrador to pursue the "Anglo-Saxon route", bypassing Quebec, to connect with the national transmission grid through Nova Scotia. This route imposes the cost penalty of two sub-sea underwater crossings, one of 30 km and the other of 180 km , thereby placing both Lower Churchill projects at a cost disadvantage. The cost per unit of Gull Island energy is lower by virtue of economies of scale. From this perspective it makes more sense to develop Gull Island with its power

[^7]
Maing Best Use of the Lower Churchill

capacity of $2,250 \mathrm{MW}$, rather than Muskrat. This is in keeping with both the theory and practice of public utility ecomomics.

Nalcor has attempted to use the leverage of the US Federal Energy Regulatory Commission (the FERC). The FERC's Onder 2000 provides that "all transmission users should receive access under rates, terms and conditions comparable to those the transmitting utility applies to itself to serve its own customers." This open access provision is intended to open up wheeling of power through long distance transmission lines by imposing FERC rules upon Canadian companies, including Hydro Quebec, selling
 power lines owned by Americen utilies, Hydro Queboc has to cornply with the wheeling rules established by the national American energy regulator, which demands that reciprocal apen access rules be observed. The Province has atiempted to deal with Quebec through a series of negotiations and legal maneuvers but, as noted earlier, none of these has been successfui. ${ }^{23}$

6,0 How much power is needed on the Island?

Nalcor has selected a 50 year time horizon for planning purposes and has performed a cumulative present value analysis for the period 2011-67, which includes the 50 years after the 2017 in service target date for the Muskrat Falls project and is reflective of its capital life. It has forecasted a growth in demand of 0.8% a year for this period.

The actual compound annizal growth rate in energy consumption that occurred for the period 1970-2010 was $2.3 \%{ }^{24}$ (see Figure 2). This rate is in fact driven by growth in the first 20 year period, since there was virtually no growth from 1990 to 2010 . The Province's population is virtually static and growth projections are modest. In recent years, the loss of two pulp and paper mills at Stephenville and Grand Falls plus the expropriation of the Abitibi hydroelectric facilities and the elimination of a paper machine at Comer Brook kave created negative growth. These factors resulted in a decline in energy use from 2004 to 2010, wher it declined to 1990 levels. As a forecasting tool the 40 year growth rate of 2.3%, used by Nalcor to estimate fulure trends, is suspect, given the lack of growth in the period 1990-2010, notwithstanding that electric heating is being used in 85% of new homes. It can credibly be argued that the historical period from 1990 to 2010, during which growth was flat, might be a more relevant reference period for firture planning. From 2010 to 2067, Nalcor's forecast of compound annual growth is 0.8%. Nalcor maintains sufficient reserve capacity to ensure that the loss of load probability (LOLP) is no greater than 2.8 hours per year. By this standard, capacity deficits begin in 2015 and energy deficits in 2019.

This means that the Holyrood thermal plant would not be able to meet preak winter demand and still meet the LOLP reserve capacity by the year 2015. If the poak could somehow be spread out the system would be able to supply energy requirements up until 2019. The inexorable winter weather does not permit elimination of the peak, in a Province where electricity is widely used for home heating. However, more aggressive demand side management might be a good way to shave the peak and deliay the need for new capacity.

This suggests that it is not the forecast of robust growth in demand that is driving the Muskrat Falls project. Rather it is more closely linked with the goal of removimg the Holyrood Thenmal Plant from the system. The power capacity of the island system at present is about $2,000 \mathrm{MW}$, with energy capability of 9 million MWh. Slightly more then $600 \mathrm{M} W$ of the $2,000 \mathrm{MW}$ of power capacity is thermal power, mostly generated at the Holyrood plant, of which 490 MW is fully operational during winter months and

[^8]Meling Best Use of the Lower Churchilt
could produce 3 million MWh, if operated year round. Because of the high cost of bunker C fuel ${ }^{25}$ this capacity is only drawn upon when hydroelectric generators are ruming close to their maximum output. As the load grows the dependence upon Holyrood thermal capacity increases, It is this growth in the use of expensive bunker C fuel that is driving the Muskrat Falls project, combined with the projected increase in fuel prices and the high cost of refurbishing an old plant: ${ }^{26}$

Holyrood's historical consumption and historical oil prices are not a basis to forecast the thermal plarzt's production output and oil costs for the next 20 years. Twenty years from now, if the Holyrood plant remains in operation, Hydro estimates the plant will be burning an average of about 3.5 milition barrels of heary fuel oil a year, at a projected cost of about \$150/BRL CDN which is appraximately $\$ 500$ million armually. For comparison, in 2010, 1.36 million barrels was burned at Holyrood at an average cost of $\$ 74 / \mathrm{BBl}$ CDN.
The Long Harbour hydromet plant which has been constructed to smelt nickel from the Voisey's Bay mine will impose a major demand upon the Holyrood plant. ${ }^{27}$

By 2015, electricity demarsd on the island is expected to reach the same level as 2004 when we hit ann historical peak in electricity use, and it witl continue to grow from residential, commercial and industrial electricity usage.
Almost all extra load growth on the islond from today, inciuding the addition of Vale Inco's large industrial load at Long Harbour commencing late in 2011, will cause Holyrood outpur to once again increase. The Long Harbour hydromet plant at full load in 2016 will require the burning of an additional 1.1 million barrels of heavy fuel oil at the Holyrood thermal plant every year under normal hydroelectric production conditions.
The additional 1.1 million barrels of heavy fuel oil in 2016 is almost a doubling of the 2010 usage at Holyrood, all driven by one industrial plant.

7.0 Alternative sources of power for provincial load

Nalcor's preferred choice, Option A, is the construction of Muskrat Falls and transmission lines to the Island (and amother to Nova Scotia). As Option B, Nalcor has identified an aiternative generation expansion path with no interconnection between the Island and Labrador. This expansion path draws upon a combination of small hydro sites on the Island, along with wind power, refirbishment of the Holyrood thermal plant, other small thermal sources, along with energy conservation measures to reduce dependence upon thermal power. Option B is estimated to be more costly than Muskrat Falls, Option A. The cumulative present worth (CPW in 2010\$)) of the Isolated Island alternative over the period 2011-67 is $\$ 12.3$ billion, compared with $\$ 10.1$ billion for the Muskrot interconnected option. Muskrat Falls is preferred by over $\$ 2.2$ billion dollars (see Figure 3).

The load forecast is based upon forecasts provided by the Department of Finance, which is projecting minimal growth in population over the forecast period. Nalcor has assumed that the two mills at Stephenville and Grend Falls will remain closed, that the Comer Brook paper mill and the Come by Chance Refinery will comtinue with their present level of energy use and the ricicel smeliter will begin to take power in 2011, rising to its full load in 2016. The provincial load forecast must also include new industrial requirements, including those emerging in Labrador from an expanding mining industry. Real

[^9]disposable income is projected to rise by 0.9% a year from now to 2029. Average housing starts are projected to drop from 2575 (by 2014) to 2135 (by 2029). The preference for electric heating is assumed to continue. ${ }^{28}$

The three small hydro sites scheduled for development under Option B are Island Pond (36MW and $172,000 \mathrm{MWh}$), which will require 42 months to devalop, Fortisin Crecir (23 MW and $99,000 \mathrm{MWh}$) which will take 32 months to bring onstream, and the smaller Round Pond (18 MW and $108,000 \mathrm{MWh}$) which will take 33 months to develop. These three hydro power sites will contribute 77 M itive capesity.

The Province has two existing 27 MW wind farms (at Fermeuse and St. Lawrence) which are connected to the Island transmission system. The next potential wind farm will have a capacity of 25 MW (using eight wind turbines) with firm energy capability of $70,000 \mathrm{MWh}$. It will take 30 months to bring such a system on stream. If the Island were interconnected the potential for additional wind turbines would be enhanced by enabling energy exchanges, depending on where the wind is blowing.

Nalcor's Isolated Island alternative continues to rely heavily on thermal fired plants. Combinedcycle comburtion turbine (CCCT) plants can be fired by light fuel oil or by natural gas. The proposed 170 MW CCCT plant would generate $1,340,000 \mathrm{MWh}$ of firm energy. The overall project schedule is estimated to be at least 36 months from the project release date to the in-service date.

Option B provides for two 50 MW (net), simplo-cycle combustion turbines (CT) to be located either adjacent to similar existing unite at Hydro's Hardwoods and Stephenville Terminal Stations, at the Holyrood site or at greenfield locations. They are fired on light cil and due to their modest officiency relative to a CCCT plant they are primarily deployed for peaking and voltage support functions. If required, they can be utilized to provide an annual firm energy capabiity of $394,000 \mathrm{MWh}$ each.

The small hydro and wind units will add 102 MW , while the CCCT and CT units will add 270 MW, for a total of 372 MW by 2030 . This incremental capacity of 372 MW compares with the 824 MW capacity of Muskrat Fallis. The cost of these capital assets plus the cost of fuel are estimated at more than $\$ 12.2$ billion, $\$ 2.0$ billion more than the cost of the Muskrat Falls project. Nalcor is, strangely, not forecasting an increase in generating capacity beyond 2030, in the Isolated Island ahernative.

Option B will include eddressing environmental concerns with sulphur dioxide (SO2) and particulate emissions at Holyrood in the 2015-20 period via the addition of scrubbers sand electrostataic precipitators, at a cost of $\$ 582$ million. This will be followed after 2030 by the replacement of the thermal units ($\$ 1,504$ million). It appears, based on the evidence filed by Nalcor with the PUB, that the additional 372 MW in place by 2030 will be sufficient to meet demand up to 2067.

8.0 Alteruatives to Development of Muskrat Falls

Other alternatives to the development of Muskrat Falls have been proposed. Fisher et all ${ }^{22}$ have undertaken a desk study for the Harris Centre of Memoriai University which examined the potential for very small hydroelectric developments, along with additional wind power. They claim that such developments are sufficiently economic to avoid further dependence on thermal power in the absence of a Lower Churchill megaproject. The conclusions of the report require additional study but the authors have made a case for investing in further exploration of the options before the Province commits itself to a large and expensive project such as Muskrat Falls.

[^10]The Joint Panel received presentations dealing with wind power, specifically the notion of a large wind farm on the Island with a capacity of 800 MW gad with ensigy output comparable to Muskrat Falle. The levelized cost of energy cited was 7.5 cents per $K W h{ }^{30}$

All of the possible altematives camnot be explored in this essay. Four other options will be explored briefly in addition to Option A (Muskrat Falls) and Option B (Isolated Island Alternative). One, which we will call Option C, is pursuit of the larger Gull Island project, the cost per kilowatt hour of which is lower than the cost of Muskrat Fails ${ }^{31}$. This $2,250 \mathrm{M}$ W project can provirce close to 12 mition MWh of energy, more than twice the output of Muskrat Falls. In the absence of wheeling rights through Quebec and access to Hydro Quebec's high voltage transmission system, the necessity to build expensive new transmission lines and underwater power cables across two Straits (the Strait of Belle Isle and Cabot Strait) makes it extremely difficult to deiver energy at competitive prices. Ir sumius Guin power sould be sold through Quebec it is likely that Gull energy could be delivered more economically than energy from
Muskrat Falls.

The provincial reference to the Public Utilities Board does not include consideration of this option, which is unfortunate. The reference himits the enquiry to consideration of Muskrat Falls, in comparison with Naicor's Option B, the Isolated Island alternative. However, development of Gull Island is an attractive option if wheeling arrangements can be negotiated with Quebec, possibly with Federall help, and if markets can be found for firm energy commitments.

Option D is magatione with Quebec to access power, prossibly supplied from the Churchill Falls power plant. It is unlikely that Hydro Quebec would sell the power at the same price stipulaked in the power contract between $\mathrm{CF}(\mathrm{L}) \mathrm{Co}$ and Hydro Quebec. However, the price might be more advantageous than the cost incurred to develop Muskrat Fails, with 40% of the energy remaining unsoid. Transmission lines would still need to be built to connect Labrador with the Island but the cost of building the new generation site at Muskrat Falls would be avoided, es would the cost of the link with the Maritimes.

Option E is to set our sights on the year 2041, when the 65 year Churchill Falls power contract will have expired, and more aggressively to moderate demand on the Island until that time, through demand side managewent and conservation. The Joint Panel reports that the Province is budgeting \$3.1 million for conservation and demand management or about 0.75% of utility revenues. Hydro's consultant proposed that this should be substantially increased. Demand management can be accompliished by using better pricing signals, where prices are more finely tuned to reflect marginsl cost ${ }^{3 \pi}$, thereby signaling to the energy user the cost consequences of his decisions. This might be a good way to discourage electric space heating in favour of more efficient alternatives.

In addition to introducing disincentives to the use of energy, government could open up competition on the supply side by offering to purchase power from small producers, particularly small hydro, wind and solar producers and other rerewable energy sources. This would open up private sector solutions to the supply of emergy and perhaps, ultimately, trensfom Hydro into a system manager, reducing its role in the direct provision of energy. Hydro could then focus its energy on the transmission of power, including building an intercomnection with Quebec.

Option F is a variant of the Isolated Island alternative. It includes a themal plant af Holyrood but one which is converted to use natural gas, a cleaner and cheaper alternative, rather than Bunker C, with its high emissions. Abundant natural gas is available on the Grand Banks in association with producing oilfields. It has been suggested that a system of pipelines be established to collect gas and that the

[^11]
Making Best Use of the Lower Churchill

pipelines come ashore on the Avalon Peninsula, possibly in Holyrood. ${ }^{33}$ Nalcor has advised ${ }^{34}$ that there are two problems. One is that the gas is currently being used to optimize oil production through reinjection of natural gas and that production of gas would detract from the economics of oilfield operations. The second is that natural gas prices have fallen largely as a result of new discoveries of gas found in association with shale, known as "shale gas". This decline in prices has a "good news, bad news" effect. The good news is thasi natural gas is cheaper, thereby enhancing the viability of the proposed conversion at holyrood. The bad news is that the low prices may not justify a large investment in underwater pipelines on the Grand Banks. Another important fector is trey the requirements of a converted thermal plant would be extremely small in relationship to the large amount of natural gas which would be piped and may not justify bringing a pipeline landfall on the Island.

Two other sources of natural gas should be considered. One is liquefied natural gas (LNG) which is transported by gas tankers from suppliers around the world. This supply of natural gas should be explored as an alternative to Bunker C. Market prices are relatively low and large volumes are available. Liquefection of natural gas on the site of floating oil producing platforms is not considered feasible by industry experts. Compressed natural gas (CNG) is another possibility and might be available by compressing gas on oil-producing sites as well as from international suppliers outside the Province. Both LNG and CNG should be explored to improve the economics of the isolated Island alternative.

9.0 Is Muskrat Falls the best option to supply the Island?

The Muskrat Falls project is probably a second or third best solution. Notwithstanding the power agreement whereby the overall investment is shared between Emera and Nalcor Energy, the project will cause alarge increase in the already large debt burden of the Province. This raises the question as to whether a private sector solution can be found, or a private public partnership, which will avoid the added direct debt burden, Can such a partnership be found which will engage the private sector as weil as other provinces, possibly Ontario? Could such a partnership build Gull Island rather than Muakrat Fallis, and, in so doing, secure lower prices for Newfoundland and Labrador consumers while at the same time serving other North American consumers, by meeting their needs with firm and long term energy conaracts?

The selection of Muskrat Falls as the first Lower Churchill project defers the preferred Gull Island project, with its larger capacity and lower cost per energy unit, which ideally should be the first project in the sequence of Labrador power developments. While the Churchill Falls project conferred few benefits upon the Province fitid not impose farge financial obligations upon the Provincial Goverment or is Crown Corporations to underwrite the firancing costs, as coes Muskrat Falls.

Option A, with Muskrat Falls, leaves 40% of the power without committed sales and the politically unpalatable potential of being sold in the Maritimes or New England at a price below the prices charged to local consumers. The challenge is to mobilize the resources of the Province so that the noeds of local users will be given first priority while at the same time extracting maximum rent for the people of the Province. If neither of these projects can be expedited without inflicting huge financial risks upon ratepayers and taxpayers then perhaps other avenues should be found to bring demand into fine with the supply of energy. Looming large over these decisions is the prospect of access to Churchill Falls power in 2041, both to meet the energy needs of the Province and to generate revenue through sale of power at current and rising energy prices. Do we have the foresight to make the tough choice of short term pain for long term gain?

10.0 Other potential uses of Lower Churchill Power

Miuch of the public debate over Muskrat Falls has focused on meeting the energy needs of the Island and shutting down the Holyrood power plant. In assessing local needs one has to look as well at the

[^12]Maiding Best Use of the Iower Churchill
growth of industrial demand in Labrador. While the mining industry has been expanding in Labrador as well as in Quebec the energy available to fuel this growth has remained limited to the 225 MW generated at Churchill Falls to replace Twin Falls and made available to the iron ore industry. In addition there is a block of 300 MW of recall power that is being used by local domestic and industrial consumers.

We need to assess all potential uses for power in Labrador, including the further processing in Labrador of indigenous mineral resources, and also mineral resources extracted from nearby mines in Quebec. Electric power can be used as an instrument of economic development to emoourage processing and smelting of local ores. It can also be used to encourage the smelting of imported raw material such as bauxite into aluminum. Our Province has in the past used cheap energy as an inducement to develop energy-intensive industry. Such incentives must be weighed against the benefit of extracting rents by sale of energy to growing central Canadian and American markets. Such sales will require resolution of the wheeling issues which have for so long delayed power development in Labrador.

11.0 Comelusion

The Lower Churchill Project (or projects) needs to be viewed from a national, provincial and regional (Labrador) perspective. It is in the national interest to develop clean, renewable energy projects which allow Canadians, wherever they live, to enjoy access to our comparative abundance of hydroelectric resources, without compromising the ability of resource owners to maximize their economic rent. National policy should facilitate free interprovincial and international trade in energy and reduce barriers to the free flow of energy in all its forms. Cansda has not enjoyed the same freedom of trade in electric energy as does the United States, nor has the National Energy Board (NBB) played the same trade-liberating role as has ithe Federal Energy Regulatory Commission (FERC). Yet there is a Federal Government commitment to bilateral free trade between Canada and the United States.

The Federal Govemment has been invited to participate in the financing of the Muskrat Falls
 the questions identified by the Joint Panel are addressed to their salishertion and unless they have some management zuthority in decisions nelaximg to the commissioning of the project. They will want to ensure that a Lower Churchill development strategy that places Muskrat first in the sequence is in the national interest. They will also reflect upon the Panel's caveats about the wisdom of the Province undertaking Muskrat Falls on its own without further analysis of the alternatives. The Lower Churchill, embracing both components, Gull island as well as Muskrat Falls, has the potertial not only to satisfy the energy needs of Newfoundiand and Labrador but also of electrical consumers across Canada. For this reason Canada should the Lower Churchill within a broad policy context and will explone how national policy instruments can be used to fecilitate interprovincial wheeling of power. The LCDC may be the approprizte instrument both to support financing of the project and to allow the Parliament of Canada to declare the project to be a national undertaking for the general advantage of Canada under Section 92 (10) (c) of the Constitution Act.

The Panel has recommended that the two components overlap in order to maximize net benefits. In light of this recommendation we would expect that the Federal Government will want to assure thost markets in Cansula are clearly idendified to achieve cost recovery for the full energy oulput and that if markets are not avalidble in Canada they should be found south of the bordse in the United States.

At this point in time it is difficult to undertake effective marketing, when the most cost effective transportation route (through Quebec) is precluded. The Province of Newfoundland and Labrador should be fiee to choose between the Quebec versus the so-called Anglo-Saxon routes on the basis of cost. If the Quebec route were an available option and if the cost were substantially less than the cost of the AngloSaxon route, with two submarine crossings, then Newfoundland and Labrador might elect to maximize its economic rent by selling all Lower Churchill power west, meeting the energy requirements of the Island from facilities entirely located on the Island. When this choice is unavailable the Province is left with only
one possible wheeling option to market energy surplus to its needs. Clearly there is a case for the exercise of national policy to ensure that efficient choices are made, within a free trade environment.

The Province's energy policy concerns itself with meeting the energy needs of the Province, as well as optimizing economic benefits and economic rent from energy developments. The Joint Panel has questicned Natcor's smslysis. which showed 作at Mushoret Felis is the best and least cost way to meet domestic energy requirernents. It recommended that an independent analysis of economic, energy and
 prominence given to the 2041 expiration dlate for the Upper Churchill contract in the Province's 2007 Energy Plan the Joint Panel recommended that Nalcor include Churchill Falls power in its pimmning for 2011-2067, which includes the period 2041-2067.

The Province has to be cognizant of the impect of the Muskrat Falls project upon Labrador. The Joint Panel heard a large volume of evidence from aboriginal and other groups in Labrador. Labrador can potentially benefit from the availability of power for use within the region. They concluded that a largescale mitigation and adaptive management effort will be required to offset adverse social and biophysical effects. Social effects can be fully mitigated with enough resources and the passage of time. They also concluded that the residual environmental effect, though much reduced. would still be negative for Labrador. Unless the Province establishes a policy framework to redistribute benefits to Labrador the region may suffer negative net benefits.

In summary, there are a number of issues that must be adidiessed in weighing the options for supplying the energy needs of the Province of Newfoundiand and Labrador. There are inherent advantages to be achieved through interconmection with the Mainland, in terms of reliability and the ability to export (and import) energy from renewable energy sources, sucin as wind. With respect to Muskrat Falls (Option A) versus the Isolated Island Alternative (Option B) the former will provide greater long term stability of pricas to consumers by avoiding depeadence upon unpredictable oil prices. On the other havid, without a frnm namiket for sumphes energy, Muskrat Falls involves building overcapacity and requires a large investument up fromt, with the potential for cost escalation and for adding to the provincial debt. The Isolated Island alternative allows for capacity to be built as needed depending on changes in the trend of load growth over time.

There is merit in the recommendation of the Joint Panel for an independent assessment. Such an independent assessment might be undertaken by broadening the terms of the reference made by the Province to the Public Utilities Board, or, preferably, by rescinding the exemption of Muskrat Falls and Gull Island from the jurisdiction of the Public Utilities Board. The Muskrat Fails decision should not be rushed. Due diligence requires further consideration of all of the issues raised by the Joint Panel, particularly the following:

- The lack of firm purchase agreements for surpius power and a clearer understanding of mariketing possibilities;
- The use of other thermal altematives, such as natural gas;
- The inefficient use of electric space heating; and
- Opportunities for conservation and demand management.

For convenience, the options are shown as follows, along with their advantages and disadvantages.

Five Options	Pros	Cons
Option A: Maskrat Falls Project with Link to Island and Maritime Transmission Link	- Price stability, upon completion. - Lower overall cost (CPW). - Connection of Island to continental grid. - Avallablility of acdifitional power for industrial load growth in Labrador. - Sale of power surplus to needs of Province.	- Overcapacity for Island along with high initial cost. - Potential for cost escalation. - Increase in public debt. - Reliance upon long transmission limes with two sub-sea crossings. - No market for 40% of the energy. - Loss of Avalon Peninsula based emergency power by removal of Holyrood thermal planit.
Option B: Isolated Island Alternative	- Increased flexibility by building new capacity only as needed. - Can use demand side management.	- More costly than Muskret (\$2.2B). - Vulnerability to escalating oil prices
Option C: Gull Island Project	- Lower per unit cost. - Potential to accommodate unforeseen load growth. - Connection of Island to continental grid. - Revenue from sale of surplus power on firm basis.	- Overcapacity - Reliance upon Quebec for transmission. - Requirement for firm energy markets.
Option D: Negotiate with Quebec to purchase power, with Link to Island	- Reduced capital cost. - Lower energy cost. - Connection of Island with continental grid.	- Nalcor indicates that Quebec is not receptive. However this may change as the political scene unfolds.
Option E: The 2041 alternative, drawing upon Island sources as needed, along with aggressive demand side management, until Churchill Falls power is availible in 2041, at the end of the power contract with Quebec.	- Reduced capital cost. - Increased flexibility by building new capacity only as required.	- Higher prices before 2041. - Loss of economic opportunities from development of the Lower Churchill.
Option F: The Conversion of the Holyrood thermal plant from Bunker C to natural gas.	Improved viability of Isolated Island alternative. Lower fuel cost. Lower emissions.	- Possible high capital cost.

Making Best Use of the Lower Charchill

12.0 Bibliography

1. Bruneau, Stephen, The Ratiomale for a Natural Gas Pipeline to the Island of Newfoundland, October 2005, see http://www. engr.mumeal-sbruneau/research/energy/noia.pdf.
2. Canadian Electrical Association, Building Tomorrow's Electricity System: Electrictiy Frundamertals for Deciston-Makers, 2009.
3. Canadian Electrical Association, Canoda's Electricity Inchastry: Background and Chaklligges,
2010 .
4. Churchill, Jason L., Power Politics arbd Questions of Political Will: A History of Hydroelectric Development in Labrador's Churcchill River Basim, 1949-2002, in Collected Research Papers of the Royal Commission on Renewing and Strengthening our Place in Canada, Volume 3, pp. 257312.
5. Feehan, James and Melvin Balker, The Origins of a Coming Crisis: Renewal of the Churchill Falls Controct, Dalhousie Law Journal, 75 p., Faculty of Law, Dalhousie University, Healifax, Spring, 2007.
6. Feehan, James, Smallwood, Churchill Falls and the Power Corridor through Quebec, Acadensis,
7. Fisher, K, M. T. Iqbal, and A. Fisher, Small Scale Renewable Energy Resources Assessment for Newfoundlland, project funded by Harris Centre, 2010.
8. Froschauer, Karl, The Churchill River Trap (Newfoundland), in White Gold: Hydroelectric Power in Canada, Vancouver: UBC Press, , 1999, pp. 108-137.
9. Government of Newfoundland and Labrador, Focusing our Energy, Energy Plon, 2005.
10. Government of Newfoundland and Labrador, Joint News Release and Backgrounder at http://www.releases.gov.nl.ca/releases/2010/exec/1118n06.htm
11. Government of Newfoundland and Labrador, Terms of Reference and Reference Question, PUB website at https//www-pub.nf.ca/applications/MuskratFalls2011/files/corresp/TermsOfReference.pdf
12. International Energy Agency, Key World Energy Statistics 2010, Paris: IEA/OECD, p. 19, http://www.iea.org/textbase/nppdf/free/2010/key stats 2010.pdf.
13. Joint Review Panel, Lower Churchill Hyydroelectric Generation Project Nalcor Energy Newfoundland and Labrador, August 25, 2011 at www.gov.nl.ca/env/env assessment/projects/Y2010/1305/lower churchill panel report.
14. Millan, S. M., Energy in Newfoundland, Geoscience Canada, 1(2), pp. 35-40. 1974.
15. Nalcor Energy, 2010 Business and Financial Report; p. 9.

Meking Bess Use of the Lower Churchill

16. Nalcor Energy, Geperadion Planning Issues July 2010 Update, System Planning Depariment, at httpo//www.pub.ni.ca/applications/MuskratPalls2011/files/exhibits/Exhibit16GenerationPlanningTssuesJuly2010.pdff
17. Nalcor Energy, Response to Lower Churcerdl Hyaroelectric Joint Review Panel Reformation Request of March 21, 2011 at hitip://Whow.ceaa-acee.gc.ca/050/documents/49310/49310E.pdf
18. Nalcor Energy, Muslrat Falls Deveiopment: 2011 Annual General Meeting.
19. Nalcor Energy, Mushrat Falls Development: Presentation to the PUB, July 18, 2011 at http //www.pub.nl.ca/applications/MuskratFalls2011/files/presentation/Nalcot-Projectoverview-
20. Nalcor Energy, Why the Holyrood plant will mean escoloting rates for consumers by Paul Humphries and Rob Henderson June 28, 2011 at http://nalcorleadershipblog.com/?page=2.
21. Nalcor Energy and Emera Energy, Term Sheet, November 18, 2010, at http:://www.nalcorenergy.com/assets/nalcorenergyandemerainctern $\% 20$ sheet.pdf.
22. NERA Economic Consuhing: Final Report Newfoundiand and Labrador Hydro, Marginal Costs of Generation and Transmisston, Miay 2006.
23. NERA Economic Consulting: Implications of Marginal Cost, Results for Class Revenue, Allocation and Rate Design, Prepared for Newfoundland and Labrador Hydro, July 2006.
24. Smith, Philip, Brinco: the Story of Churchill Falls, Toronio: MoClelland and Stewart, 1975.

Making Best Use of the Lower Churchill

Figure 1: Map of Muskrat Falls Development

Making Best Use of the Lower Churchill

Figure 2: Historical and Forecast Energy Needs

Making Best Use of tie Lower Churchilit

Figure 3: Comparison of CPW of Muskrat Falls with Isolated Island Option

LCP - Muskrat Falls First Key Indicators

Demad for bowes - Jub growission
A1. 12 on of fub sebwisin
 Pnowes peedey arfactructore Apadigg)

A.vis - eustricel load grouit a importat hot My drobite baselene

f.18- obefreaty ve han $990-2010 \rightarrow$ cometid dowed simill any 0.1. ab
 15 Cones Brite - inbistras low ledued by 45° uslen's utility load sacludes all Mridatiel, formeral
ad liptr elecricaty we gres by 1.1701 y
f 19- vintiolly frak Lloas ouatith 1: 1990's - 1.5 . hew $2000-2010$

- melel phere (or electrid space heligy 19919 - 2009

Ftue dectriaty treaut padil - 20 ves mectileonme forecast

- Key loa forccant inhts for fin inchodo GDP Nopedions. perstrel ineme levele, lea haxing vati en popletion

 1.22- dey Pruedr emsuptas (tobion, tuhery, Cowes booty, hy thavens, (av-by. (lance)
123 - Lrvinceel noamine laducotri (besome goroth, powletar) 124 - wher 1 lomatic fextomer hin artaned to gin despie

 westel thers $<67.27 .1$ is 2009.2029 f.2- fartornal anuel frowh bio $2009-209$ n 1.37 .

-"by. 2015 phowed sorith of n. llew'i vility demed

- Limber ve of enerfy ettriceng seviges hosid
- Wate farbar

- 246, ono Petephyer \leq he ponine

- sogewelk har, totel omont of fowis yo law, veel ver bow Neg welt - emonel vsed ok of foak is thi

 cawmer er bookg for over ho pame of eyeer

Nomber iflin
Sters to Cherefersmat

(1) Grimer deal
(3) tera heet hoged of Einese
(4) Eaternel Nolen fooeser - $G_{1} \mathrm{~W} \mathrm{O}_{2}$
(3) Envirometrel friornet fand
(0) Neviger fepart
(1) bub Leeny, leat. pert quan
\rightarrow Reviw by luartle Hydo zolian ladelendes puies
© fus pepar / desers
a) debere/ducisin L Itove is Sping ritiog
10) Lecurar n enetin

- if Tre Op Apecti u freeer Gill a a pascibilily
- it bitor falle Nk 1 im or wotet ho left N lones ner be feir get po $p \rightarrow$ hev \rightarrow sele p Qdeber
 ph The meref y
- Pratara of fellars fon Evropea prais
- Ner lefier of kruge place

WN Nother 1911
Howy (ool)
 lorgy mets (everge i tlo mege walty)

- Cedality or 486 chege weth

- ace hig ttarhir coue a is 214 Hoçroor ind pridue puel pore fovers ($\frac{1}{3}$ of ovt berg peche)
- Ling berbant nu pepine Dha mequett pruvelly
mit ve 1 pali al in liteplood
Nodigent et a 9 Zileat electricity Aptrae bos a totel genentioy
- NL Hydor, $1317 \mathrm{MW}(717$.

Nf loer ; 136 mo (17.)
Comer borb hy: eper a 122 mas (67)
frer lele a Explan fues - 108 mul (6?.)
Other motevility geuretiri $13 \mathrm{mal}(41 /)$

1 12 - In 2010 bilen electricity saple hed e fede donear it 1418 mv

- electrialy demear lugheat 1 fidur crintis pald

ub Subuscin

$$
\begin{aligned}
& 1.39<\text { Vility fopedi } \text {, pistend fond - " } 199 x \text { is } 20.5 \\
& \text { (rotlea) freet }{ }^{9} 111 m=2004 \\
& \text { Whyontl }<4582 \mathrm{M}=2015
\end{aligned}
$$

- Thyyood 146 mus (net) ofl find thermal

< de 3 vats mrowenf deate volimy lecubes tead
$148<$ Tone 11 - Hoypor her oui lhaurtio

$$
\begin{aligned}
& 1000-1.6 \text { n } / \text { han }>49.4 \text { h } \\
& 2002=9.02 \mathrm{lime}-112.5 \mathrm{~m} \\
& 2003=3.0721604<814.85 \\
& 1.006=1.26 a \mid 641-463.5 \mathrm{~m} \\
& 2008=1.73+144 \times-6122.10 \\
& 2010<1.36+1 \mathrm{lh} 46>-5100.6 \mathrm{~m}
\end{aligned}
$$

148-1Ky

 unfrial leveli as heynd f
f49- Cowe 18-Alfapthere prisene of Folypoed

Nut tydre, 921 Mus
Nus Thumel < 590
NH Deser 140
CblPV, 12
fras leve- Galoh, iob
Nor Vtiling Preorm $\frac{13}{1,958}$
1,958 Mr
Nis - Thle 20 - eficaty lehate fo umere in 2015 whe fim evergy dehect fonkerny in 2021
 ils on gevectir Homen emberm

Now 22111

(1)

Electrialy rates at it leade?

$\frac{\text { Pare pates gong if? }}{2000-2 \text { ? }}$

$$
\begin{aligned}
& 2000-2011 \\
& \text { * } 2011 \text { - } 2017 \\
& \int-2017-2025
\end{aligned}
$$

- $263-268-2420$
foy whe hats fines

(3) ofet a nuolve) in 14.34 |k.wh? imporeme 1 Lom areature

1) fice i $\mathrm{Ol} \sim \mathrm{lim}$

keetry of Nolear me
Emerp. Mertan : Shet jos
Northeat rean $-\mathrm{Ne}, \mathrm{Ny}$ Ohr, NB
(1) actin methet Mamenele actricty potus.

cplere quecitme tomero

- Gid paele - cetroliel litily
 biky 1 chers pre 1 hrel pree

- feel - 1:000- Ni:or ip Mandey. Gidey, way hay

zHere n elwang, poshat

- harizatil driluy

(1) etrichm is puphis ander bir is a pulity il price

3) puentar of peyph - Mr pohbelv of doin

Níankés $28 / 11$
meeting wी Wood luckenzie
(1) Agla,
(2) hy for patere
pob fred - pree of expertice a cethinl ges

- will Waot pee pree 2001

Conor Vinee, Celyay sflee
1 key pout p pardek wI NL gart.

al is a tighary netar a Nel ges by lad effered effect: Us

- imerase a pali 1 fritralie - VI pe bel fritroche frice
- US ges pethef toley dow bs lact

X whet her theo gae lune b He wetchen 2 $<$ pric lef If petvirel gac $k \int^{3} 3: 00-6.00$

- it "3.00 develetbe the at dhared Asary
cun tele 30^{t} tho frae for preclisefins

- loct ia VS veiw pat 1 Rivan w frie

$$
91200-914.00
$$

C mod experve gas a Oozs is tranavilu or. fore 1

- Hegreatle a Lowsing

< Implowlic firceng vell a bo,000 wele

c procelng is fupler pepestry os ieve a porve isive
Chatellar- to bilun puhe freet jes dey by 1020

T Throft 1030 sen pro x $6.00-6.50$ (|leary |in)
hescelmeremblu of a Incoror

- Vas lingeal electricel meeraty Mat or mer-Creved
* butere 15 隹 Markey?
- pit gea la deop rud dectical gearetion flesi per be

< pececir effected indutonel vv

- Loal Nayt retriematr - Mhiral giad it coplace

(330 gagewolth it coel flak $/$ meral)

the. M'reet
astapth a Dhotro -a lari lacery 397. A dectricuty Nod 5 Awh
Amorct Anva-
< lupda ok pandered grees everge by Miw Moder a

- Vermorr claye Ar Neres ma-d-N moer frecte
 loy hydral io le inchuder e per a reasdo partflic
$<2030-2031$ (1) 14 or wi weer fieer t peet bo yoes fast 40 yeer the 20- yeer peneweble)
< 2011-2.31 - lement Mer by Nex i whire gee: lenewhely -Wea pos graws a bitle
$\sqrt[4]{2031}$
dyplacinert A foel qeeverter

$$
- \text { hudx }<37^{7}
$$

< twe meatien bi foer boib is De soiners us
Queber <1200 whi peppuel mot Ny

X ar beser far pe papee of New Enflest perewdhle frapen

- Nes haowses laee has of of buits
- . ${ }^{\circ}$
- Nas fresesce bigny belver hade a has
buebec'i vies poes anchaprest
(1) letruel ans thes ilfect pexpost when
(2) Lhed fati is Now lippe)

decticity will low th he red chey - if yov pele of for

$$
\AA
$$

$\angle M$ boy incerratel penes pline

- Do redfy war lelo dur ster yor ce- wh fore
a Me fettel las of free yor onet
 wall yek bude?

 - $<$ ML wizing pacen seoren
- NL wiefra ieshas lak otter 35 yeer akering restets is vs

Norember 30/II
meeting ple electricity potec
lisere pe flode 1 : Nowabel 2all
lone) a $N_{N} / \frac{10}{}$ al proen

thodai' prea.
$<$ wive $<$? chesth lown bewrey

- 2518 kult, (dectivd heet, no al - $65^{\%}$).

hons reng people is peed gory?
Sflit Shid $1<2000$ - 2010

$$
<\frac{2011-2011}{2001}-20 \%
$$

\int Lioe 29 gany $\frac{h}{}$ vider veti 204

Nnember 30/11
meety - To patine isevo Bunbill
9^{9} li.00 ngat \rightarrow Nost inh NE

$$
\begin{aligned}
& \rightarrow N^{2}-7.00 \mathrm{~mL} \\
& \rightarrow N B-7.00 \text { gis } \\
& \rightarrow N e-50
\end{aligned}
$$

- Te her 1 hetur:

$$
\begin{aligned}
& \text { Conl - } 21.00 \text { mpah } \\
& \text { wolees - } 29.00 \text { loght } \\
& \mathrm{NL}
\end{aligned}
$$

Q Heet a bet ve it petris power? - let wator fun don the Aiver or vie ir?
(2) Where soll postete be 30 year fin mo ?
(3) NS/NS deeling of Queber $\|$ M merteti in US

Pria
HA wath-cese peevero of No kildyy No lav?
Ed - cowld lox ne goeserseter

- calc ady wa pras an of Mquy, Mberpor pheeper.
- cer flas Onive Aurf Dielte r lat ney can blodi ves

[^0]: ${ }^{1}$ NL Flydro is a subsidiary of Nalcor. This report will use the term "Nalcor" both in reference to the parent company and the subsidiary unless there is a direct reference in NL Hydro.

[^1]: ${ }^{2}$ Net of station service loud
 ${ }^{3}$ "Nalcor Response to Panel Information Request March 21, 2011." April 1, 2011.

[^2]: ${ }^{1}$ The author is gratefil to Nalcor Energy, for providing information and agreeing to the use of their map and charts in this document, as well as to James Feehan (Professor of Economics at Memorial University), Ron Pexney (former Deputy Minister of Justice with the Province of Newfoundland and Labrador), Victor L. Young (former Chair and CEO of Newfoundland and Labrador Hydro) and Fred Way (former Vice-Chair of the Canada Newfoundland and Labrador Offshore Petroleum Boand, Secrecary to Cabinet, Deputy Minister of Intergovernmental Affairs and Deputy Minister of Natural Resources), for helpfil comments on previous drafts of this essay. Any errors or omissions are the responsibility of the author alone.
 ${ }^{2}$ (16), slidie 21 and (9).
 ${ }^{3}$ (12), p 19.
 ${ }^{4}$ (2), p. 15.

[^3]: ${ }_{9}^{9}$ See (9)
 ${ }_{11}^{10} \mathrm{Sec}(15), \mathrm{p} .20$.
 ${ }^{11}$ Ibid, p. 9.
 ${ }_{13}^{12}$ From the Newfoundland Power bill of David Vardy dated Augast 11, 2011.
 ${ }^{13}$ (9), p. 16.

[^4]: ${ }^{14}$ (14) pp. 35-40.
 ${ }^{15}$ (4).

[^5]: ${ }^{19}$ (13) p. 308.

[^6]: ${ }^{20}$ Ibid. p. 305.
 ${ }^{21}$ Ibid. p. 34.

[^7]: ${ }^{22}$ Ibid. p. 307.

[^8]: ${ }^{23}$ For a history of the power corridor issue see: (4), (5), (6), (8) and (24).
 ${ }^{24}$ See (19) slide 10.

[^9]: ${ }^{25}$ Bunker \mathbf{C} is a high viscosity residual fuel which is what remains from the processing of crude oil after the more valuable products, such as gasoline, have been removed. The residue may include undesirable impurities which add to the negative environmental impact of operating the Holyrood thermal plant. ${ }^{25}$ (20).
 ${ }^{27}$ (17)

[^10]: ${ }_{29}^{29}$ The dati on load and generation options in this and the following paragrephs are taken from (16) and (19). ${ }^{29}$ (7).

[^11]: ${ }^{30}$ (13) p. 32.
 ${ }^{31}$ The levelized unit energy cost for Gull Island and Muskrat Falls were extimate at 3.92 cents and 4.47 ceats per kilowatt hour (KWH) (2000 dollars) respectively. Ibid. p. 19.
 ${ }^{32}$ (23).

[^12]: ${ }^{33}$ (1).
 34 This information on LNG is based on a discussion with Ed Martin, President and CEO of Nalcor Energy, and his
 senior officials, on April 14, 2011 .

