From:	Connors, Virginia
To:	Connors, Heather
Subject:	SNC-Lavalin Risk Assessment
Date:	Friday, June 23, 2017 3:34:52 PM
Attachments:	SNC-Lavalin Risk Assessment.pdf

Hi Heather,
I just gave your Minister a copy of the attached report - but the last page is missing. Would you please print the last page only (in colour) and give it to her.
Thanks.
Virginia

SNC. AYANIN RISK ASSESSHENT

COMER CHURCHID PROIECT 50557

CLIENT: NALCOR

APPROVALS

Confidential for SNC-I avalut internal use only
Risk Review for Lower Churchill Project 506673 date April 2013
TABLE OF CONTENTS

1. Introduction 3
2. KEY ELEMENTS OR THE LCP RISK MANAGEMENT PROCESS: 3
3. Mandate, 4
4. Executive Summary Report. 4
4.1 Management assessment of risk exposure 7
5. CONCLUSIONS 8
6. Recommendations 9
7. Risk Workshop Methodology. 9
8. Risk Register Summary table 1. 13SNC•I.AVALIN

RISK PMANAGEMIENT		SNC•LAVAIIN
Rlsk Review for Lower Churchill Project	606573 date	April 2013

1. INTRODUCTION

The LCP project presently under development encompasses the Muskrat Falls Hydroelectric Plant, assoclated transmission lines, DC specialties and a subsea cable crossing. These four distinct physical specialties are broken down into the following respective components:

- Component 1: Muskrat Falls Hydroelectric Development
- Component 3: High voltage direct current transmission system specialties
- Component 4: High voltage overhead transmission lines including:
- Sub-component 4A: HVdc overhead transmission lines Muskrat Falls to Soldiers Pond
- Sub-component 4B: HVac overhead transmission lines Muskrat Falls to Churchill Falls
Component 2 is the Gull island Hydro power plant (2000 megawatts) to be developed subsequently to Muskrat Falls, and the execution of the subsea cable across the Strait of Belle Isle which is not part of the SLI scope.
This Risk assessment has been made solely by a selected team of SNC-Lavalln Experts at the request of the SNC-Lavalin Prolect Director for the Lower Churchill Project. Expecting a high market heat up on major strategic. packages, the LCP. Project Director asked that an internal LCP project risk assessment be conducted following the SNC-Lavalln risk assessment method typlcally applled on all other SNC-Lavalln projects. The Risk assessment workshop was conducted by the Risk Director, of North America Region of Global H\&MM Division, who has had previous experience in hydroelectric power projects at Hydro- Québec/Bale James Society (SEBJ).

This review was conducted at SNC-Lavalin's expense with the objective of preventing and or mifyathg any unforeseeable risk events that could have a negative Impact on the project's cost and schedule and could Increase the project exposure by more than 30% from its original budget.
2. KEY ELEMENTS OF THE LCP RISK MANAGEMAENT PROCESS:

- Lower Churchill is a high profile project; for the local community, the provincial and federal governments.
- SNC-Lavalin is contractually the EPCM and has an obligation to Inform the Owner (Nalcor) with regards to any events that may jeopardize the execution of the project.
- This new Risk Assessment report is more in line with the objectives of the Project Execution Plan and with SNC-Lavalin's risk assessment guidelines.
- The SNC-Lavalln Risk Team has reviewed the orginal Risk Register in force on the project. The Risk management system implemented on the LCP did not provide for the quantitative evaluation of Risk exposure, focusing rather on qualltative risk assessment aspects aimed mostly at providing visibility and monitoring of actions supporting Risk miltgation strategies. As such, it did not provide a proper overall-encompassing evaluation and clear plcture of the dollar value of each risk and the resulting total risk exposure for the LCP project;
- Risk Management is not duly empowered under the present LCP organizational structure, which should report direclly to the Project Director. Present organizational reporting structure should be discussed and re-evaluated at the steering committee;
- Under this new methodology of assessing various levels of risks, the very high consequence risks will be highlighted and will be presented to SNC-Lavalin senior management and Nalcor for thelr review, discusslon and agreement on remedial action plan to be implemented, and where possible, a preventive action plan put forward;
- In the present risk assessment report, risks (both threats and opportunities) that could arise during and/or after project execution were considered;
- Risks are managed through the SNC-Lavalin standard management tool, MOINS RISC - LESS (based on Dyadem International's Stature platform).

3. MANDATE.

Appoint a Task Force dedicated to the preparation and issuance of an executive management report drawing optimized conclusions resulting from the high level risk assessment on the Lower Churchill project and identify high level mitigation strategles and supporting action plans, using the standard SNC-Lavalin methodology and tools.

4. EXECUTIVE SUAMMARY REPORT

The first LCP project risk register was drafted April 17th, 2013, by a group of selected members from the Montreal, Panama and Newfoundland-Labrador offices, appointed by Senior Management. A second project risk assessment review was conducted from the 18th of April until the 214 of April 2013, by the same team members. Both these reviews were performed In light of the actual LCP project situation, and the increases in pricing recelved on some major construction packages, well above their original estimated budget and schedule. The project must come to the realization that the market response to these large bid packages is limited to a few major players. The pricing tendency is showing signs of being well above their original set budget. The pricing of all the bids contractual risk factors by the bidders will be much more sfgnificant than expected and the procurement
strategy originally foreseen for some major packages may no longer be applicable and may result in a project schedule and budget overrun of more than 30% of the actual project estimated value if the present project conditions are not altered.
The Task Force has reviewed and discussed the original project risk register and decided to proceed with the elaboration of a new risk register based on SNC-Lavalin risk assessment methodology, so as to provide a more realistic and manageable portrait of the actual project risk clrcumstances.
This new risk assessment approach was approved by SLI's Senior Management at the request of the SNC-Lavalin Project Director for the Lower Churchill Project.
The objective of Identifying all the potential risks of the Lower Churchill Project was attained.
A quantitative risk assessment was performed based on the relevant hydroelectric experience of the appointed Task Force Members. The calculated risk exposure for the Lower Churchill project is estimated at 2.4 billion CDN (please refer to Risk Register Table 1). This figure, based on the Team's experience, represents an order of magnitude of + or - 50% of our potential cost overrun.

This report is at its preliminary stage, slnce it has not been distributed to all the project participants for thelr perusal and comments, given the urgency to present this risk assessment report to STNC-Lavalln Executive Management.
Out of the 52 risks originally identified, 12 were retired due to double dipping or not foreseen as a risk. Out of the remaining 40 Project risks evaluated, 25 are considered to be Very High Risks, 3 High, 9 Medium and 3 Low.

The Very High represents 80% of the total number of identified risks from the Lower Chürcill project. This is unusual or a projact in execution. This indicates that many risks are foreseen to occur during the execution phase and could materialize and cause the project to deviate from its set schedule and baseline.
A strong risk control system should be pul in place to prevent the budget cost overruns that are presently foreseen, to be in the 39% range. The attached risk register herein it details the miligation measures and actions plans that normally form part of the report and should be review in depth with the project execution plan. A further detalled Risk Reviaw should be performed at a later stage in participation with Nalcor Energy representatives.
Value-wise (quantitative assessment), 9 out of the 25 Very High risks identified, represent 56% of the estimated risk exposure value, estimated at 1.4 Billion CAD.

Risk elements:

The 40 risks ranking from Very High to Low Risks have been Identified by the Team members and represent an estimated cost of 2.4billion CAD. It has been evaluated in view of the actual potential cost trend of the project's contractual situation, surrounding economic and socioeconomic environment.

The following 9 Very High Prime Contract risks captured and evaluated give a fair description of the present project risk situation.

1) Restricted pool of major contractors capable of bidding on the very large packages developed for the LCP (already out for blds allowing for limited possibility to re-scope or develop new packages). Fewer bids could be submitted and at higher than original budgeted cost. This Risk is valued at 225 Million (C1) - Risk number 1
2) The unavailability to provide sufficient camp accommodation facilities may force Contractors to find altemate accommodations which could lead to mobllization and start-up delays, resuting in claims and ultimately project schedule delays. This risk valued at 203 Million (C1) - Risk number 32
3) A significant portion of the local labour market works in Western Canada. Local ... workers are inexperienced in the LCP nature of work. Currently, the NL Hebron . project is competing with our project and is attracting labourerṣ by offering gọod conditions. The unavailability of qualified construction manpower may lead to schedule delays and extra labour costs, as well as Impacting on the qualty of the works, increased safety risks, etc. For C1, the main trades issues being carpenters, electricians, tron workers (rebar), concrete pouring specialists. For C3, main trades issues being electricians. For C4, main trades issues being lineman. This risk valued at 180 Nilllion (For all) - Risk number 4
4) Due to the heated market conditions in transmission lines market (currently the case in Alberta; LCP is dealing with the same bidders) and the size of the construction packages, fewer bids could be submilted and at higher than budgeted cost. Also, very few of these major contractors will be able to perform these large packages in the proposed timeframe. This risk value at 180 Million (C4) - Risk number 18
5) Major components, such as turbines and gates, will be procured and manufactured in China. Based on SLI past experiences; quality, performance, warranty service and schedule problems can be anticipated with these Lump Sum turnkey packages (i.e. major claims and delays). This risk valued at 168 Million (C1) - Risk number 5
6) Powerhouse and splliway concrete works are planned on a three year duration (2 winter seasons) with a very tight and aggressive schedule providing little float, which might result in additional delays (possible 6 months) and costs. This risk is valued at 126 Million (C1) - Risk number 2
7) As start-up of the spillway, river closure and river diversion are to be fuffilled-In during an "ice-free" window. There is no float in the schedule with the preceding activities (EA release, camp, road, etc.). Any delay in these previous activities may trigger missing the diversion window which will result in a one year delay in the project schedule. Furthermore, there is also the technical risk of being unable to finlsh the work within the "ice free" window timeframe. This risk is valued at 86 Million (C1) - Risk number 3
8) Large EPC (Turn-Key) packages sent to a restricted pool of speciailzed DC manufacturing firms not used to perform all inclusive TK work including civil work. These added risks will most likely result in higher than estimated Bid Budget costs. This risk is valued at 90 Million (C3) - Risk number 11
9) As no geotechnical investigations have been performed in the river under footprint of dam and cofferdam, adverse conditions could be discovered during construction leading to major rework, cost overruns and delays. This risk is valued at 80 .Million.(C.1) $=$.Risk number. 33

4.1 MAANAGEMENT ASSESSMENT OF RISK EXPOSURE

The risk Team reviewers have serious concerns in regards to the strategy in progress to realize the Lower Churchill project. The packaging strategy used as reflected in the risk numbers 1, 11 and 18 above; is cause for concern. The project will face multiple problems with the large EPC contractors who will be holding the project's budget and schedule hostage and decrease our bargaining power; and should they fail to execute the work, the LCP project will also fall, and at a huge cost. The Public's interest, as well as the Provincial and Federal governments' Interests need to be safeguarded.
The EPC's will price the same risks that we have foreseen with a premium and the project management team when negotiating with the lowest bidders, it will most likely occur outside the project's budgetary range. EPC contractors will use all the loops in the contract documents to issue claims.
Procurement and manufacture of major critical project components in China will be a major cause of concern to the project and at mulitiple levels, l.e., quality, warranty, after-service, schedule, design changes, etc. In Mines and Metallurgy the major suppliers give the
casting of large structures to Chinese companies, but the heart of their sophisticated equipment is made in Europe or other industrialized nations, where quality control standards are more rigorously adhered to.
Manpower avallability is a big concern in the Alberta oll and gas Industry. They have developed to attract labour from Newfoundland, a frequent fly-ln fiy-out rotation and a generous salary and conditions package; this in a province with normally low income taxes. We have also a competing project in Newfoundland; the Hebron project is in the oll and gas industry and is also draining whatsoever manpower is left avaliable. The Lower Churchill project must attract a different manpower (earthworks and clvil works). The environment where the project is being developed is difficult and the camp condifions are a major concern if we are to attract and retain skilled manpower.
We have used the experience of a dedicated group of Experts in the Energy sector to help the LCP project team in identifying the main key elements that should be used to develop a credible risk assessment, based on SNC-Lavalin's risk management approach so as to be able to capture these various levels of risk that best portray the project's actual situation. Our approach is based on the ISO 31000 International recognition and is in line with our Corporate Guidance procedures.
This is a high profile project for the Newfoundland government, whose Guarantor is the Federal govemment, It is strongly suggested.that these ldentified.risks be.discussed.openly_ and with full.transparency amongst the Parties, $s 0$ as to be able to allign the project team. when executing the proposed miligation plans.
SNC-Lavalin, as the Project's E.P.C.M. has the legal obligation to advise its client of any major risks that will cause prejudice to the project and which deviates significantiy from its budger and schedule. Our present concern is that we forasee that the project will incur more than a 30% cost overrun if the project does not take action on the risk elements raised in the Risk Assessment Report. The actual project structure is contributing to this increasing risk factor. Client has limited experience in huge civil work and earth-filled dam work, power line and power station works. .

5. CONCLUSIONS

The present project execution schedule offers no float and critical activities could be delayed, such as the Dam, Spillway ("ice free" window time frame), long lead items, only to mention few of them. The actual problem to deliver the camps eariy, will affect the project downstream. Additionally, the specific manpower needed to realize these hydropower facilities will be difficult to find. Most important the expert committee believe that the manpower needed to fulfill the work should be in the neighbourhood of 2500 people and
the project is presently working with 1500. This concern has to be reviewed and given proper consideration at once. The camps facilities into this difficult environment should be looked at carefully and compared with the camps facilities been provided presently in Alberta and Quebec.
This exercise has to be further pursued and developed with the Team experts involving the Client, so that both Parties are alligned on how to best resolve these lssues.
Nalcor and the EPCM team have to carefully review their roles, responsibilities and contribution in this major project, since the challenges to be faced during the upcoming execution phase will be major.

6. RECOMMIENDATIONS

It is recommended that the Execultue Management of SNC-Lavalin be involved in order to discuss directly with the High Level management of Nalcor Energy In light of this new risk assessment report, which has evaluated an EXPOSURE OF 2.4 billion CAD. We have a potential cost overrun of 39% at 20% of project completion.
When published, this report will be publlc domain. Nalcor Energy and SNC-Lavalln have to discusis the next step forward.

7. RISK WORKSHOP METHODOLOGY

The risk management approach used in this workshop is based on ISO 31000 guldelines that promote a culture where risk can be openly discussed and effectively managed. The participants in the risk session each had an opportunity to express their concerns or perceived risks within the sections outlined in the scope above. The following oullines the methodology undertaken in the risk workshop.

Risk Management Process

The first step in this process was to identify risks based on the components of the project j.e., the Muskrat Falls Hydroelectric Development, the High voltage direct current transmission system specialties and the High voltage overhead transmission lines .ac and dc). Risk titles and concise descriptions were developed and agreed upon by the panel. The risk was determined to be either Component 1, 3 or 4 or concerning all the project. The team has not identified any risk owners, but this should come at a later date.

The next phase was to provide a qualitative analysis that served to provide an order of magnitude basis of comparison for each risk. The objective of providing an order of magnitude was to be able to identify the most critical risks (+ or -50%).

The panel was asked to select a consequence level (from VERY LOW to VERY HIGH), which is determined by a percentage scale based on the project's CAPEX or OPEX. In this case, the CAPEX was concluded to be $\$ 6100 \mathrm{M}$ CAD, representing the dollar value of the Lower Churchill project. The table below demonstrates the Consequence Level breakdown:

| | | RISK MANAGEMENT |
| :--- | :--- | :--- |\quad SNC+I.AVAIIN

CAPEX Consequence Level

Consequence Level	Minimum (\% CAPDEX)	Minimum (SMICAD)	Maximum (\%CAPEX)	Maximum (SMCAD)
Very High	1.00%	$\$ 61$	5.00%	$\$ 305$
High	0.75%	$\$ 45.75$	1.00%	$\$ 61$
	0.50%	$\$ 30.50$	0.75%	$\$ 45.75$
Low	0.25%	$\$ 15.25$	0.50%	$\$ 30.50$
VesyLaM	-	$\$ 0.0$	0.25%	$\$ 15.25$

The following step included selecting the probability of the risk occurring and the manageability level. Similar tables are illustrated below:

Probability of Occurrence

Probability Level	Probability	Description
Veydtigh	70% to 80%	Will probably occur in most circumstances
High	50% to 70%	Might occur under most circumstances
	30% to 50%	Might occur at some time
Low	10% to 30%	Could occur at some time
Yesyltow	$<10 \%$	May occur in exceptional circumstances

RISK MANAGEMENT	SNC•I,AVAIIN	
Risk Review for Lower Churchill Project	505573	DATE
SNril 2013		

Manageability

Manageability Level	Probabifify	Descridtion
Very High	80%	Can easily be managed
Hith	60%	In most circumstances can be managed
	40%	Can be managed
Low	20%	In most circumstances difficult to be managed
Yowv Low	0%	Virtually impossible to manage

The risk soflware then computed the Probable Consequence and classified the average risk exposure based on the following calculation and table below:

Probable Consequence $=$ Consequence \times Probability x (1- Manageability)
CAPEX Probable Consequence

Probable Gonsegrence Leve!	\% CAPEXValue	Minimum (SMIOAD)	Maxamum (SMCAD)
Very hligh	0.65\% and up	\$39.65	
Ifigh	0.35\% to 0.65\%	\$21.35	\$39.65
11	0.17\% to 0.35\%	\$10.37	\$21.35
Low	0.03\% to 0.17\%	\$1.83	\$10.37
V/aryltam	0\% to 0.03\%	\$ 0.0	\$1.83

Once the overall risk levels (probable consequences) had been identified, the panel was able to compare and prioritize the risks. The following step in the process was to create very detailed mitigations plans for each risk, including actions to be taken to mitigate these risks. These items were developed in the action log tab of the software. Due dates and
action owners will be developed at later date. This portion of the risk workshop was the most labour intensive in terms of time and overall discussion amongst the panel members.

The team was also able to provide several comments and revislons to all aspects of the elements in the software (risk title, description, mitigation plans, actions, consequence, probablity \& manageability). In addlition, several risks were retired due to the fact that they were included in other risks or they were perceived as double dipping risks by the panel.

8. RISK REGISTER SUMMAARY TABLE 1

Lover Churcher
proper
2maser:505s72
Risk Register Exposure; 2.4 billion CDN

Protec On 24-Apor.13

Lomer Churetiz
Number 505sT3

Printe On 24-Apt-13

