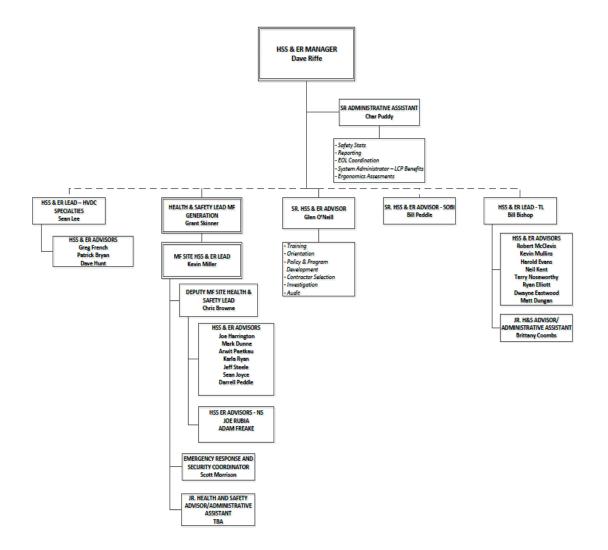
CIMFP Exhibit P-03652

Page 1

Lower Churchill Project

Ernst & Young Cost and Schedule Forecast Review January 2016

Boundless Energy



Health and Safety at The Project Office

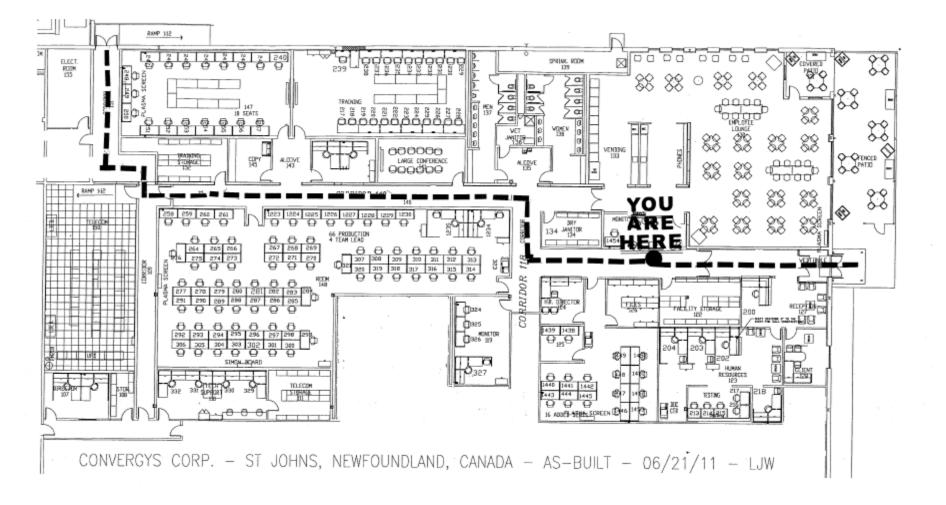
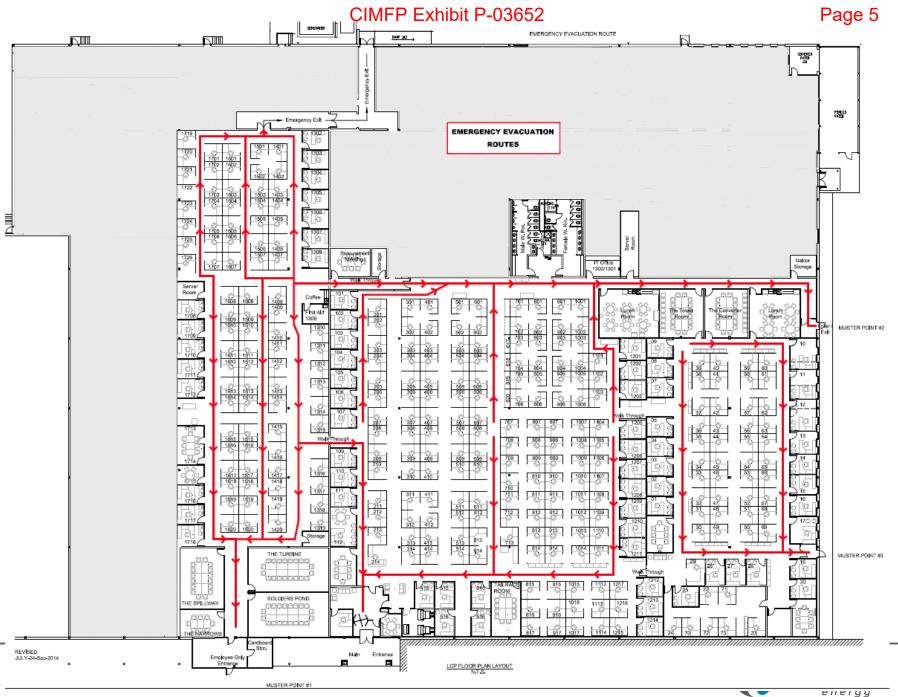

g signa

Chart LCP9: Health, Safety, Security and Emergency Response (HSS & ER) Functional Organization



Office location/configuration

Page 4

Emergency Notes

- At your location, if an emergency arises, dial 9-911.
- Fire Alarm system at your location is a continuous alarm.

LCP office fire and first aid

- Several employees trained and certified in First Aid
- Ample supply of first aid equipment including AED devices and personnel trained on these devices
- Fire wardens assigned to floor locations
- Recognize locations by colored batons.

Traffic Safety

- Parking lot is fairly congested, be aware of vehicular traffic around the parking lots and especially at the read section of the building, some narrow travel areas
- Exiting onto Torbay Road. Highly recommend travel to Highland Drive to lights and then left/right onto Torbay Road.
- Nalcor has a back-in parking policy.

Presentation Outline

Project Orientation - Outline

- LCP Approach to Safety
- Overview of the Review
- Project Organization
- Project Scope Overview
- Project Timeline
- Independent and Technical Reviews
- Governance
- Project Global Reach

- 2015 Progress and 2016 Look Ahead
 - Muskrat Falls Generation
 - Transmission
 - SOBI
 - Switchyards and HVdc Facilities
- DG3 Cost Estimate Process
- Cost Summary
- Schedule Summary
- Risk Management

LCP Approach to Safety Management

CIMFP Exhibit P-03652

Vision and Values reflect our commitment to Health and Safety

Our Vision

 Our Vision is to build a strong economic future for successive generations of Newfoundlanders and Labradorians

Our Values

 Our employees share a set of values that shape how we do business every day

Page 12

We believe

- All incidents are preventable
- An incident free workplace is both achievable and sustainable
- Health and Safety Performance is both strategic and fundamental to the achievement of project success, as well its overall business and project objectives.
- Employee and contractor engagement and commitment to this ideology is critical for success
- That to achieve at this level of safety performance requires <u>each and every one of us</u> to *Take Ownership*

Our Promise

- Genuine Commitment to an Injury-Free Workplace No One Gets Hurt
- Provide the safest workplace environment
- Work towards developing an exceptional safety culture
- Relentless pursuit of safety excellence and sustained safety performance through Authentic Leadership Engagement
- Demonstrated personal safety leadership that is *FELT* at all levels of the organization
- Safety Culture WILL NOT be compromised by what Managers say versus what they actually believe

Background

- As a construction project, Nalcor relies upon contractors to execute the physical work
 - i.e. we do not any of our own skilled craft labor, rather have ~400 FTE of engineering, construction / project management resources
 - This differentiates LCP from NLH or CF(L)Co. wherein they employ skilled craft labor
- Greatest safety exposure resides with those craft labor, who are employed by many contractors and come from varying backgrounds
 - Very difficult to create a safety culture in a non-captive or "transient" workforce

Contractor Safety Management

- LCMC works closely with contractors to ensure they are <u>fully</u> implementing their approved H&S Plans.
 - Detailed reporting and auditing of safety performance completed
 - All field staff complete daily inspections of contractor's activities to ensure compliance
 - LCMC have ~25 FTE H&S professionals assigned to the various elements of the Project
- Ongoing reporting and feedback to facility opportunities for continuous improvement
 - All incidents (including First Aids) investigated, regardless of nature
- LCMC continues to role-out new programs pan-project to address identified trends

Our Performance To-Date

- LCP has a reputation of being a safe place to work
- LCP Safety Culture is getting a foothold
- LCP Safety Toolbox implemented consistently pan-Project
- Worker engagement is increasing
 - Tremendous uptake on Step Back Field Level Risk Assessment process
- Collaborative working relationship with OHS
 - We leverage their knowledge and consider them a valued resource
 - All OHS Inspection Directives addressed, with action tracking process in-place for continual learning.
- SWOP or equivalents, Inspections and Orientations have increased dramatically in 2014

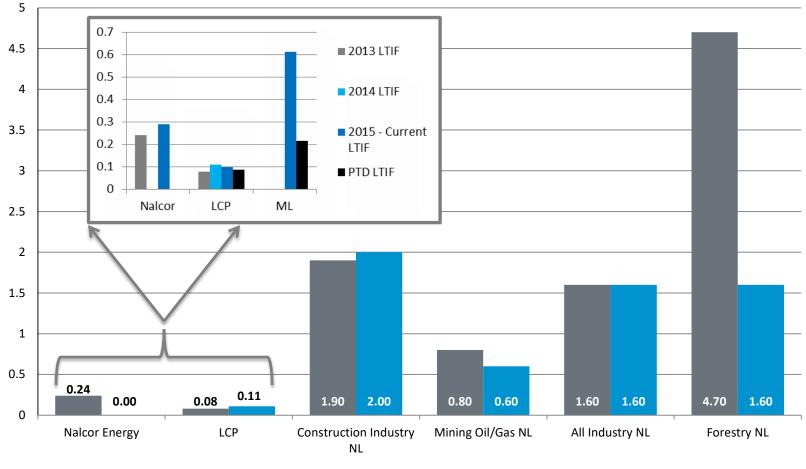
Our Performance To-Date (cont'd)

- Making steady progress or our safety journey
 - Positive indicators project wide (Behaviors, Attitudes & Involvement)
 - Worker engagement appears to be growing steadily (e.g., Step Back)
 - Continual improvement mindset had taken hold
 - Leveraging insight with leading indicators and trends
 - Implementation of behavioral-based programs underway (Be-Safe)
 - Some areas and contractors require significant coaching and oversight
- Still seeing an significant number of incidents including Hi-Po Near Misses
- Ownership, Engagement and Alignment by Everyone is Key
 - Be relentless in doing whatever is required

HSE STAT REPORT – YTD 2015

CIMFP Exhibit P-03652

Page 19 HSE Report


For period 01-Jan-2015 to 28-Nov-2015

	Current Period		Year to Date			Project to Date			
	Project Delivery Organization	Contractors	Total	Project Delivery Organization	Contractors	Total	Project Delivery Organization	Contractors	Total
Exposure Hours	809,177	7,237,012	8,046,189	809,177	7,237,012	8,046,189	4,115,919	14.085.612	18,201,531
Leading Indicators									
High Potential Near Misses	0	48	48	0	48	48	2	180	182
Near Misses	5	169	174	5	169	174	40	365	405
First Aid	3	243	246	3	243	246	18	564	582
Conditions/Hazards, Practices, & Commendations	2,309	2	2,311	2,309	2	2,311	5,284	454	5,738
Orientations Completed	2,994	6,948	9,942	2,994	6,948	9,942	10.647	12,999	23,646
TSA's Completed	0	8,472	8,472	0	8,472	8,472	24	10.330	10,354
StepBacks Completed	10.322	362.801	373,123	10.322	362,801	373,123	20,175	617,769	637,944
Worksite Inspections	4,506	10,272	14,778	4,506	10,272	14,778	7,399	16,558	23,957
Lagging Indicators									
Lost Time Injuries	0	5	5	0	5	5	0	9	9
Medical Aids	0	35	35	0	35	35	0	60	60
Occupational Illnesses	0	0	0	0	0	0	0	0	0
Modified Work Cases	1	119	120	1	119	120	1	130	131
Vehicle Incidents	15	31	46	15	31	46	15	44	59
Modified Work Days	0	2,311	2,311	0	2,311	2,311	0	2,454	2,454
Lost Time Days	0	272	272	0	272	272	0	274	274
Property & Equipment Damage	14	259	273	14	259	273	25	471	496
Security Incidents	4	17	21	4	17	21	5	30	35
Lagging Frequencies									
Total Recordable Incident Frequency Rate	0.247	4.394	3.977	0.247	4.394	3.977	0.049	2.826	2.198
Lost Time Incidents Frequency Rate	0.000	0.138	0.124	0.000	0.138	0.124	0.000	0.128	0.099
All Injury Frequency Rate	0.000	1.105	0.994	0.000	1.105	0.994	0.000	0.980	0.758

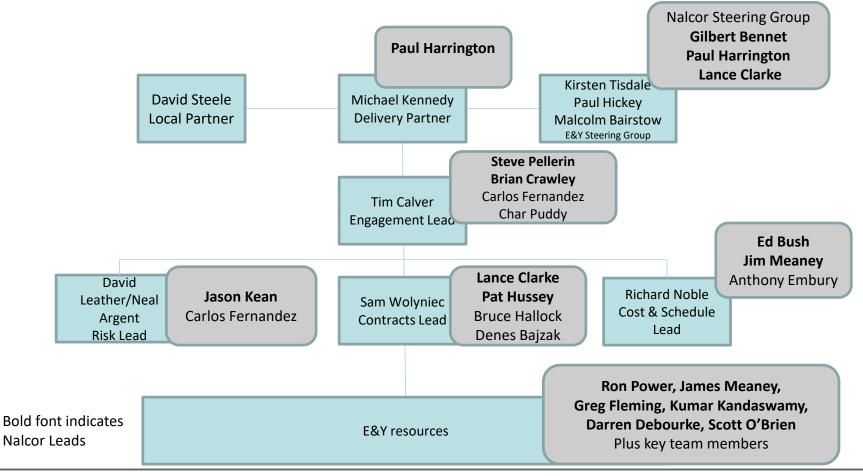
	LCMC PDT	Contractors
Days since Last LTI	1,061	21

LTIF Comparison – Lower Churchill

■ 2013 LTIF ■ 2014 LTIF

Steps to Achieving World-Class Safety Performance

Overview of the Review



General — as articulated by the Premier, Ed Martin and Malcolm Bairstow

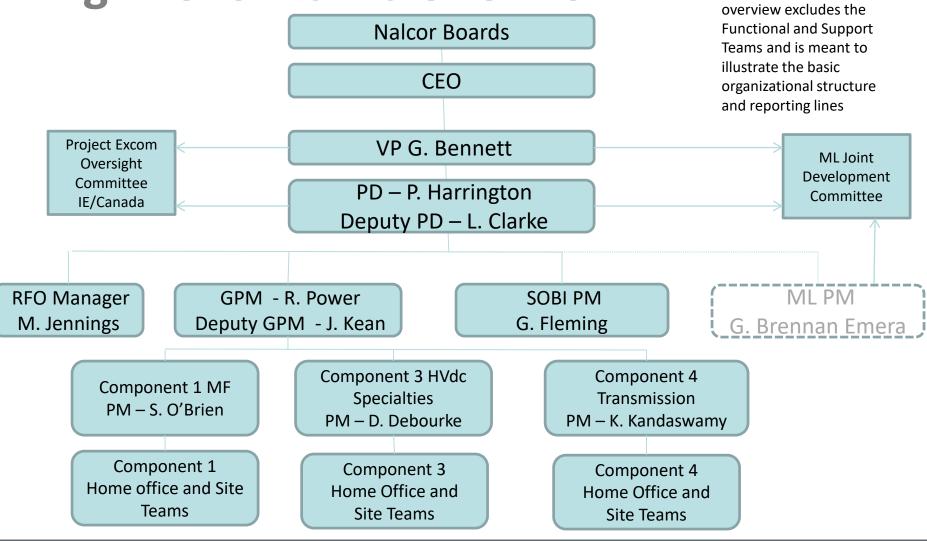
- GNL has decided to engage EY to carryout a Project cost and schedule review.
- The objective of the review is to assess the reasonableness of the Project for its cost and schedule forecast to look for material/significant risks so as to provide an independent perspective on the cost and schedule forecasts presented by Nalcor.
- EY will not develop its own cost, schedule and risk forecast but will assess the reasonableness of that prepared by Nalcor, with a focus on risks and issues that have the potential to materially impact the Project.
- The review does not include an engineering design review, physical inspection or validation of construction process and quality management.
- A Scope of Work has been developed and will guide both Nalcor and EY in this important task.
- The timelines are aggressive with a start date of January 11th 2016 and a Final Report early March 2016.
- The Project team will cooperate fully with this important review and shall work together to achieve the objectives of the review.
- The EY Team will co-locate with the Project Team for much of the review.

Proposed E&Y Organization and Project Counterparts

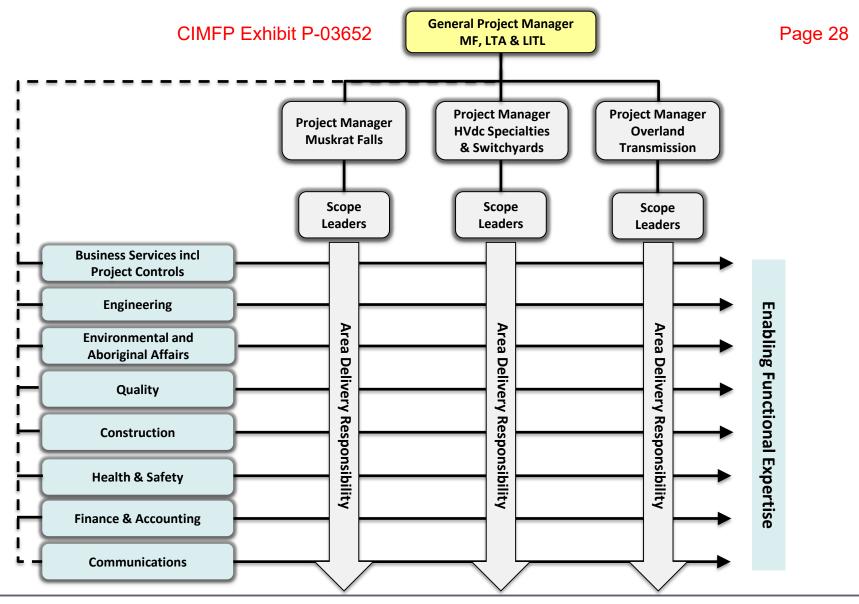
Page 24

Work Place Policies and Procedures

- The following Policies are in effect for all personnel working in our offices
 - Drug and Alcohol Policy
 - Safety and Security Policy
 - No Scent Policy
 - Respectful Workplace Policy
- Stephen Pellerin is your contact person for any information requests, data room access, meeting requests
- Sign-in/sign-out procedures are in place for work place security and safety


Project Organization

CIMFP Exhibit P-03652


Note- This simplified

High Level LCMC Overview

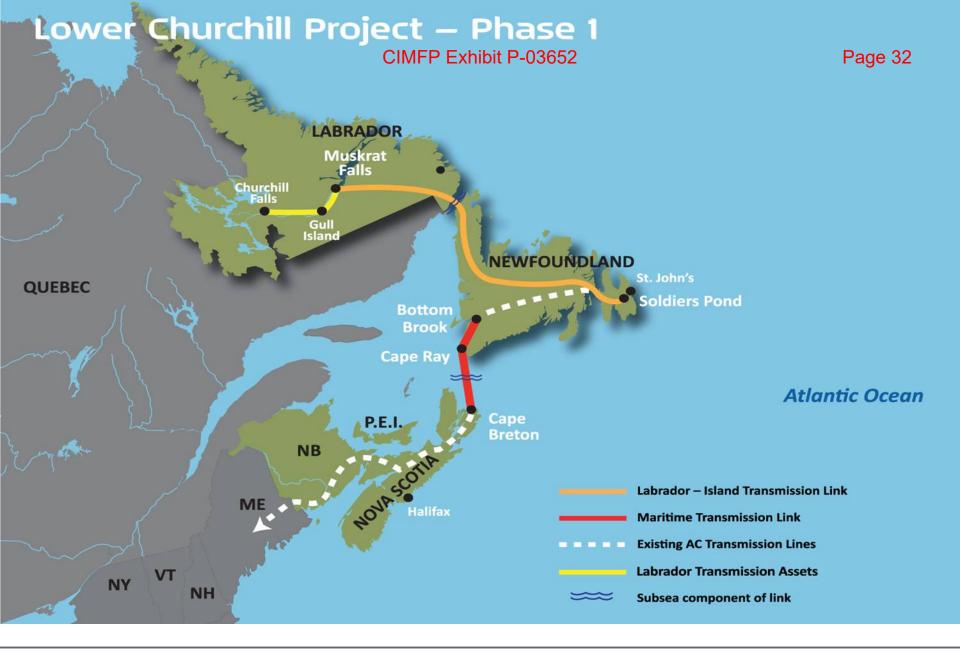
Matrix Organization of Functions and Support teams

Independent Project Analysis Inc. (IPA Global)

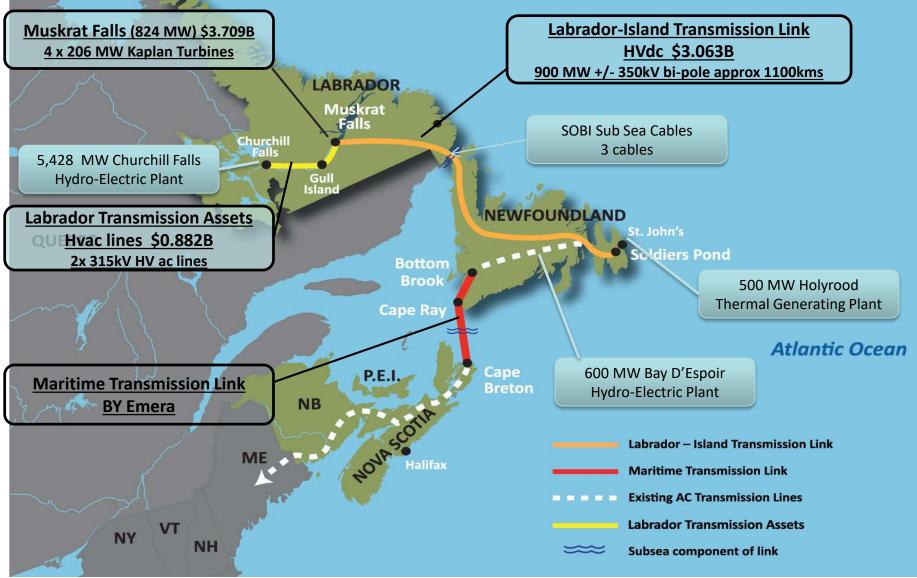
Mid-execution Assessment – December 2015

- *"LCP has characteristics that are compatible to those of successful mega-projects;*
- To succeed, LCP should continue strengthening its organization and planning;
- Organization is well staffed and teams are well developed;
- LCP Project has achieved significant progress in execution and is organizing to complete construction and to start operation;
-LCP strategies are consistent with the focus on achieving successful LCP execution to Completion."

Independent Project Analysis Inc. (IPA Global)


Mid-execution Assessment – December 2015

Key Project Characteristics of Successful Megaprojects	LCP Status
Clear Defined Objectives	Yes
Critical Owner Team Members*	Yes
Team Development Index	Good
Integrated Team	Yes
Project Director/Manager Continuity	Yes
* Critical functions include Project Controls, Scheduling	Fetimating Operations and Construction


Project Scope Overview

CIMFP Exhibit P-03652 Lower Churchill Project – Phase 1

Page 33

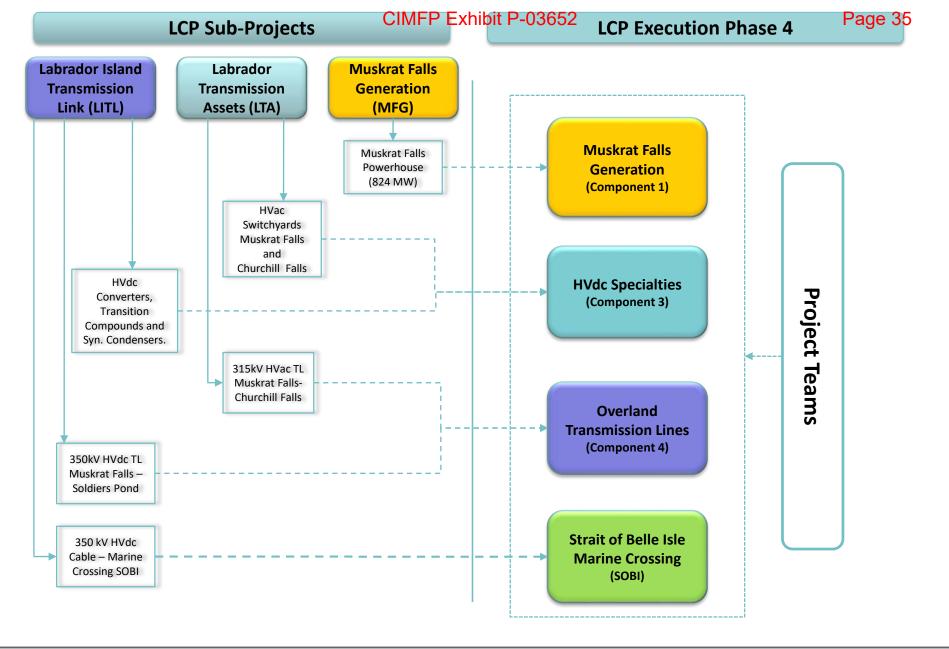
Proven Technology

Proven technology, no serial #1's and no scale-ups ensure operational integrity

MF

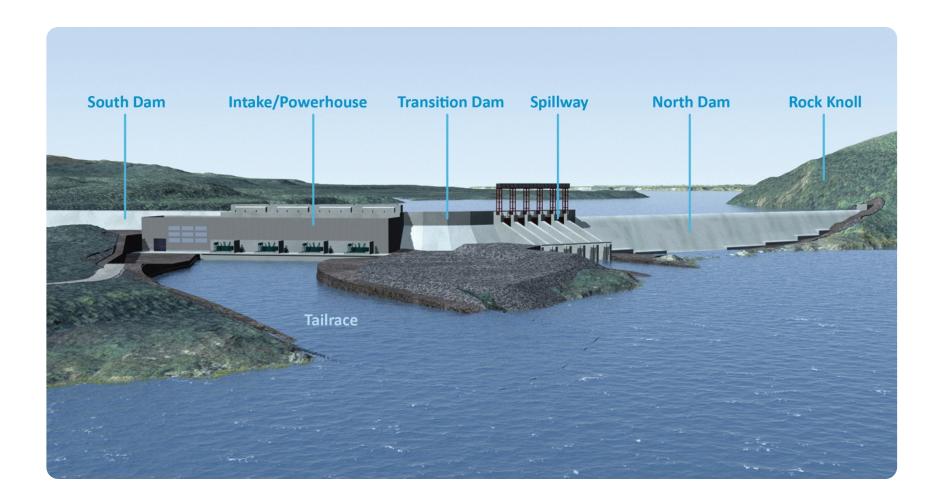
- Low-head, no penstocks concrete powerhouse founded on Canadian Shield
- Proven, model tested Kaplan turbines well within flow and head range
- Design philosophies based on over 40 years of hydroelectric and transmission engineering, construction and operations
- Conservative efficiency targets supported by equipment redundancy
- Core Nalcor technology

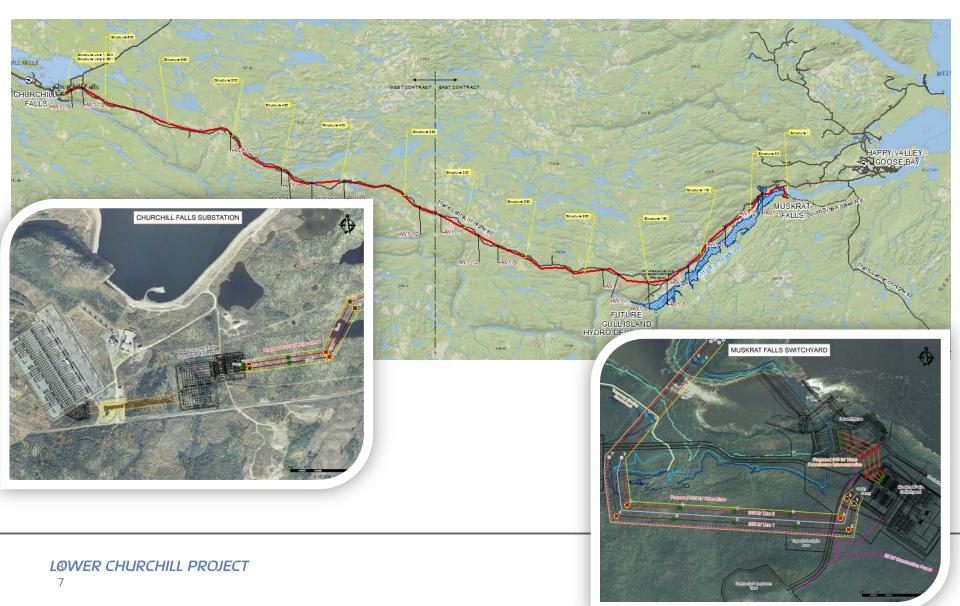
LTA

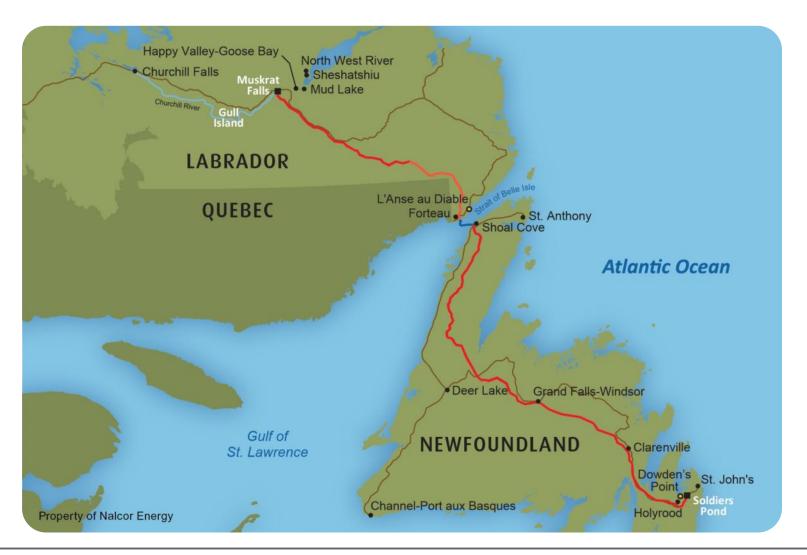

- Conventional AC technology
- Extension of existing Labrador transmission system
- Core Nalcor capability existing lines up to 735 kv

LIL

Page 34


- LCC HVDC technology used in Canada for 40+ years
- Mass impregnated submarine cables
- SOBI cable protection methods proven offshore east coast
- Typical HVdc overland transmission
- Standard HDD technology well with the boundary of design for size and distance

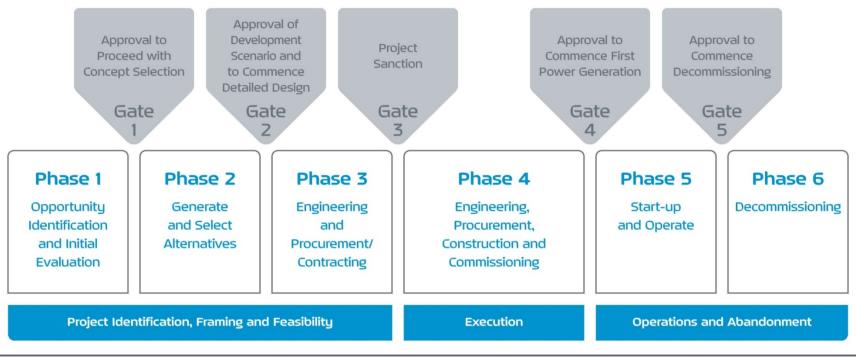

Muskrat Falls Generation



Page 37

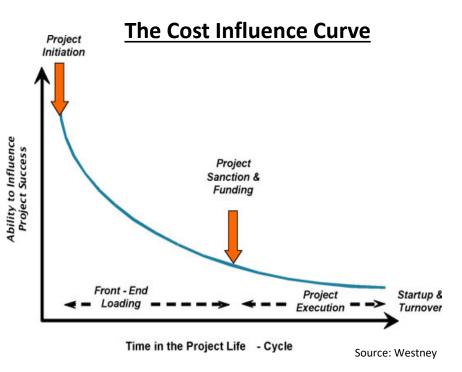
Labrador Transmission Assets (LTA)

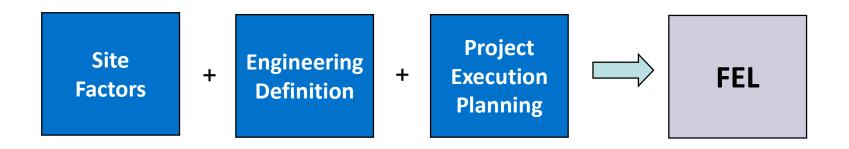
Labrador-Island Link (LIL)



Project Timeline

Stage-Gate Process


- Nalcor is implementing the Projects using a disciplined Stage-Gate Process
- DG2 was achieved in November 2010 and DG3 was achieved in December 2012
- Gatekeeper is Nalcor CEO in consultation with Nalcor Board of Directors and agreement with Shareholder

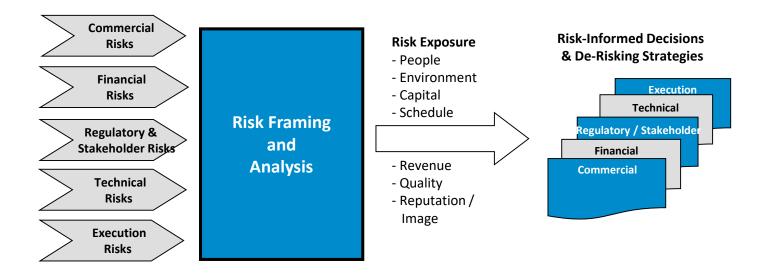

Application of Industry Best Practice

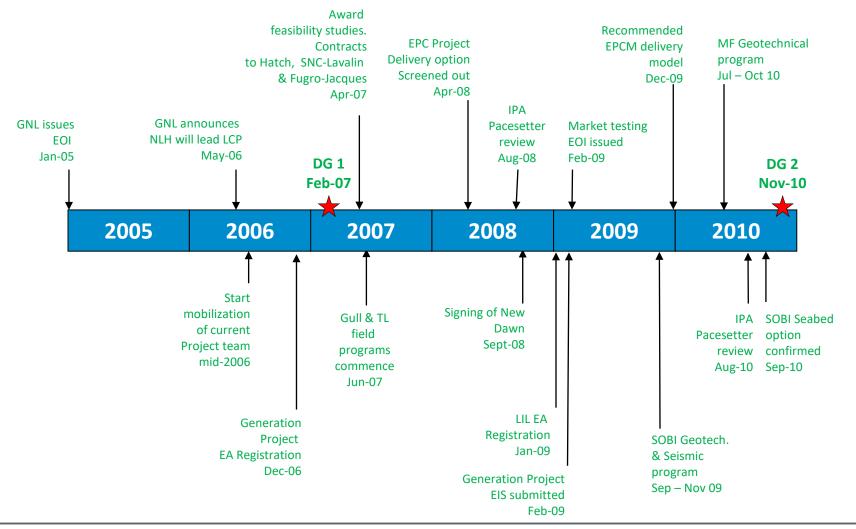
- Front-End Loading to confirm project scope and align with business objectives
 - Advanced Project Definition through completion of substantial engineering
 - Target engineering completion prior to start of construction
 - Extensive execution and construction planning
 - Adopt contracting strategies that minimizes and optimally allocates risk
 - Firming key prices through bidding before Sanction
- Early and continued focus on derisking the projects
 - Shaped engineering, execution planning, contracting strategies, and decision to commence Early Infrastructure Works

Front-End Loading: #1 Predictor of Performance

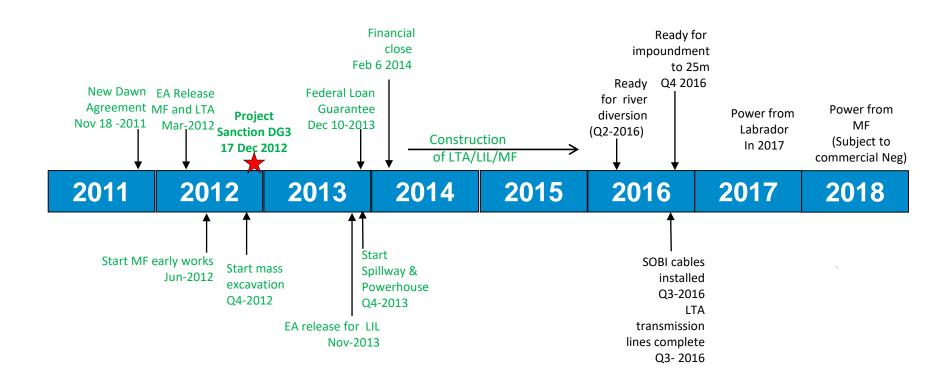
 Gateway Phase 3 focus directed towards completing the level of Front-End Loading to confirm the project definition and a "Sanction-quality" Class 3 cost estimate.

Westney's Risk Resolution Process


Early Implementation in LCP's Lifecycle (pre-DG2)


Risk-Informed Decision Making *A Key Component of Our Front-End Loading Program*

- Quality decision making will be facilitated through a comprehensive understanding of project risks and how they can be managed with least impact on the Project
 - Such risk-informed decision making will be a standard for the Project


Key Project Achievements 2005 to 2010

Page 46

Key Project Achievements 2011 to 2016

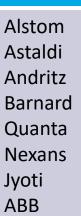
Independent and Technical Reviews

Project Reviews

- At or just after DG2 an
 - IPR was conducted,
 - IPA did an assessment,
 - Navigant did a check of the business model,
 - MHI did a report for the PUB and
 - The PUB did a public review.
- At DG3
 - MHI completing a second assessment
 - Federal government did a review with Blair Franklin
 - Emera due diligence
 - IPR completed with members of Manitoba Hydro, Westney, Retired Mobil PM
 - Author of AAECI recommended practices reviewed controls processes

Project Reviews

- Since DG3
 - Continuous internal audits by Nalcor full time auditors
 - Continuous internal audits by project quality group
 - Independent Engineer MWH full review
 - Independent Engineer ongoing monthly monitoring and review including multiple site visits
 - Multiple independent risk overviews by the projects underwriters done semi annually
 - IPA assessment on organization capability and process,
 - Powerhouse progress reviews by Westney, Retired CEO of Bechtel, Retired Army Corp of Engineers Lieutenant Colonel and Founder of CII
 - Design Review Boards
 - Oversight Committee- EY


Global Organizations Involved-Sample

Design and PM

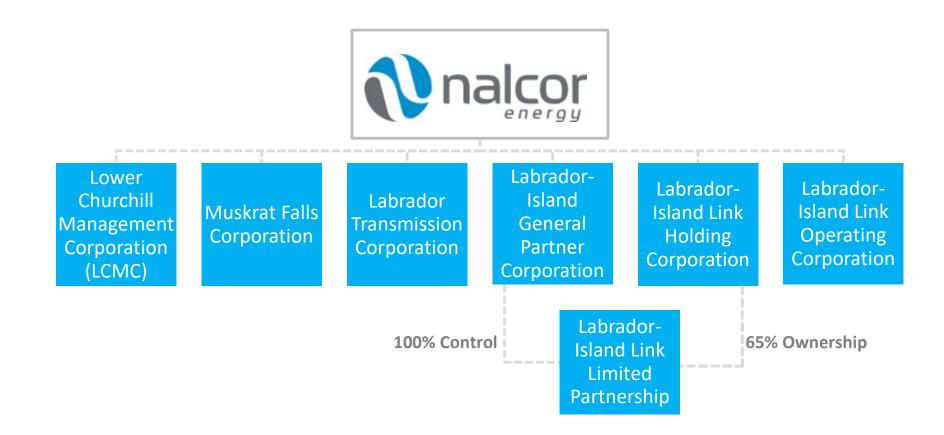
SNC Lavalin Stattnett Landsvirkijn Manitoba Hydro BC Hydro US Meteorlogical Service AMEC Foster Wheeler Hatch OPG Teshmont Etc.

PM/Risk and Finance

Westney IPA Navigant MWH Blair Franklin PWC Government of Canada Etc. Construction and Manufacturing

Etc.

Governance


Page 52

Transparency and Accountability

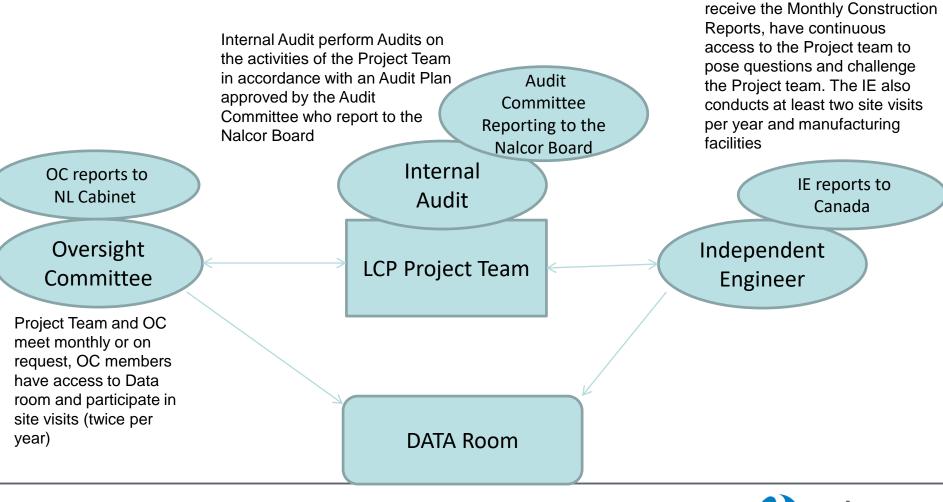
- Part of each and every line of business throughout Nalcor Energy
- Nalcor reports to the public, government and stakeholders through various means such as:
 - Formal reports
 - Public Annual General Meeting
 - Access to Information and Privacy Protection
 - Responses to Regulatory and public requests for information
 - Public information sessions and meetings
 - Open houses and presentations

LCP Corporate Structure

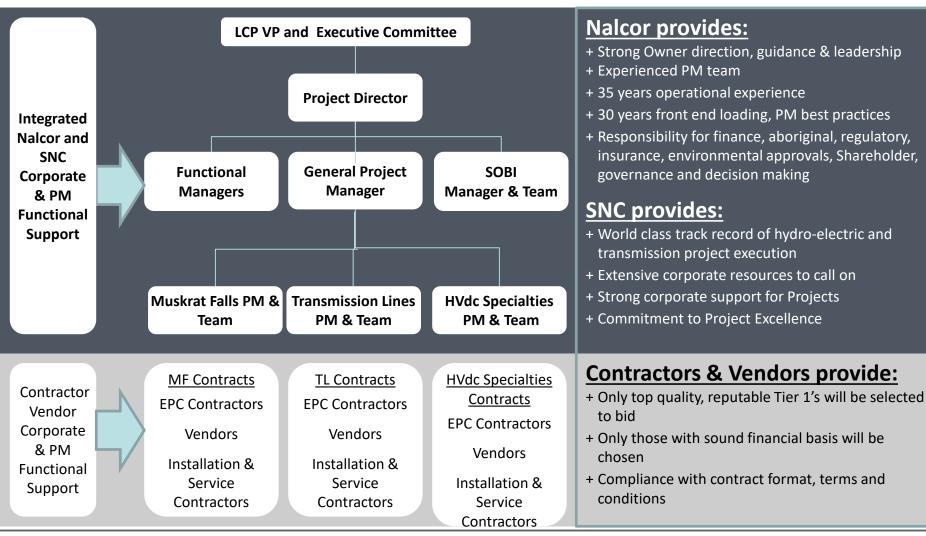
Background

- Nalcor Energy Board of Directors is accountable to the Province of NL as Shareholder
 - Government of NL (GNL), on behalf of the people of the province, holds Nalcor accountable for project management and establishing oversight practices and procedures
- As required by legislation, the Boards of Nalcor's LCP subsidiaries must include at least 2 independent directors
 - Includes 1 "super" independent director for the LCP entities involved in the financing arrangements
- Within Nalcor and LCP there are various levels of financial oversight from groups that have different accountabilities
 - LCP Project Controls, LCP Finance & Administration and Nalcor Corporate Finance

Background (cont'd)

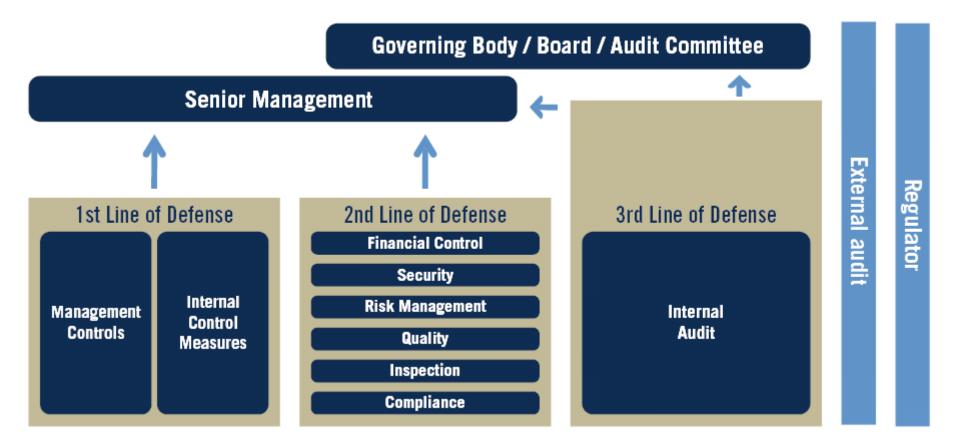

- LCP is a key focus of the Audit Committee of the Board
 - Both Internal Audit and the External Auditors support this mandate
- Oversight also provided by a number of key stakeholders external to Nalcor and LCP
 - GNL Muskrat Falls Oversight Committee
 - Purpose is to strengthen and formalize the existing oversight for the construction phase of the project
 - First report published in July 2014
 - Government of Canada, Collateral Agent and Independent Engineer ("IE") through the Federal Loan Guarantee ("FLG") arrangements and Project Finance Agreements ("PFA")

Independent Engineer, Oversight CIMFP Exhibit P-03652 Committee and Internal Audit


Page 56

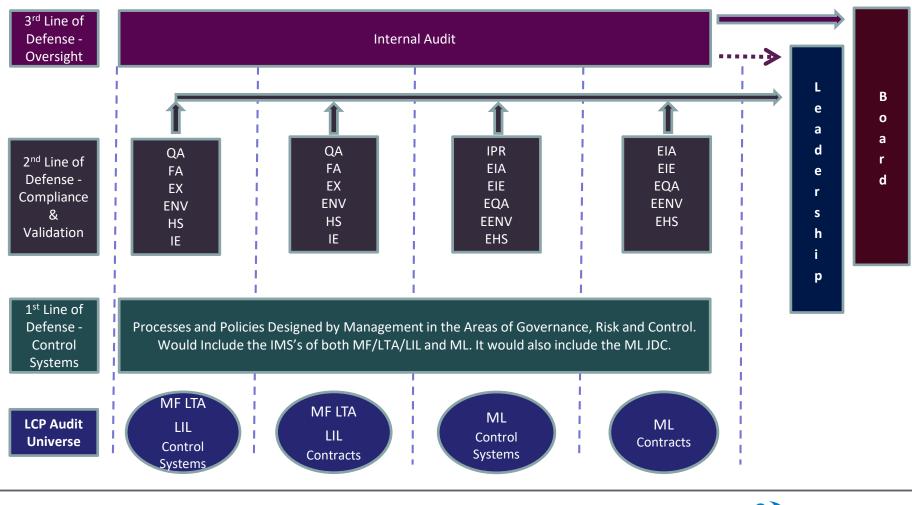
The IE and expert consultants

LCP Governance & Org Structure



Key Messages Internal Audit Assurance Framework

- Internal Audit has accountability for determining whether the organization's network of risk management, control, and governance processes is adequate and functioning as intended
- A proper assurance framework contemplates multiple layers of control and providers of assurance
- Internal Audit acts as a coordinator to ensure effectiveness of the assurance function and to avoid duplication of effort
- Nalcor's assurance framework is consistent with best practices for ensuring an independent assessment of governance, risk management, and control processes for the Project


Generic Assurance Framework Per the IIA

Reprinted from the Institute of Internal Auditors Position Paper dated January 2013 entitled; "The Three Lines of Defense in Effective Risk Management and Control".

LCP Assurance Framework - In Summary

Project Global Reach

Lower Churchill Project Global Reach

Locations around the world where components for the Muskrat Falls Project are being manufactured and fabricated

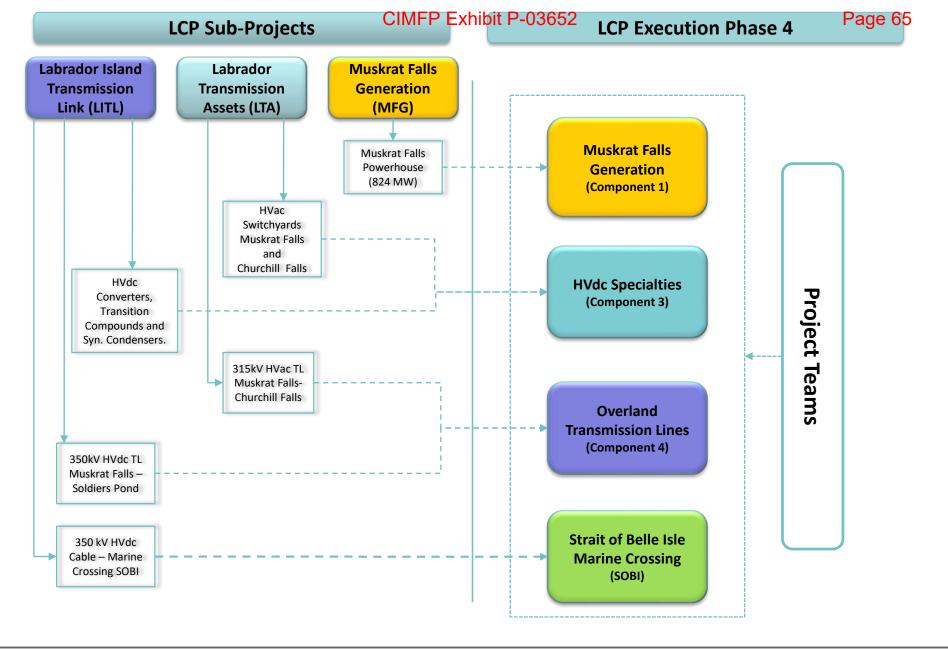
Project Delivery Model

Optimizing Project Delivery

Strategic Objectives

Balancing absolute cost against cost certainty, while...

- Achieving the required project quality
- Optimizing the project schedule
- Minimizing overall cost and schedule risk
- Achieving optimum and appropriate risk allocation
- Meeting benefits and First Nations obligations


Decision 1: Delivery Model = E+Integrated Team

- Market not amenable to single EPC, but to smaller EPC
- Skillsets required vary across the 3 SPVs
- Offers enhanced Design Integrity & Performance
- 3 separate SPV's need individual, distinct delivery representation,
- Overarching system design and management needed across the SPV's to ensure total system delivery

Decision 2: Packaging Strategy

- Each SPV requires varied skill sets – need to align to bidder resources and capacities
- Market desires are clear for most major packages
- Optimize risk allocation
- Maximizes market competition
- Heavily focusing on EPC, lump sums, and fixed unit price with known quantity
- Reflect IBA Obligations

Material Contract Strategy Summary


Muskrat Falls Generation Facility								
Contract #	Description	Contractor	Status	Туре	Strategy			
СН0002-001	Accommodations Complex	Liannu Limited Partnership	Complete	S&I	LS/UR			
СН0006-001	Bulk Excavation	KC-ONE Earthworks Constructors	Complete	Civil	Unit Rate			
СН0007-001	Powerhouse/Intake/Spillway	Astaldi Canada Inc.	Active	Civil	LS/UR			
СН0008-001	North Spur Stabilization	Gilbert Newfoundland and Labrador	Active	Civil	T&M			
СН0009-001	North & South Dams	Barnard Pennecon Limited Partnership	Active	Civil	LS/UR			
CH0024-001	Reservoir Clearing	Johnson's Construction Ltd.	Active	Civil	Lump Sum			
СН0030-001	Turbines & Generators	Andritz Hydro Canada Inc.	Active	S&I	Lump Sum			
СН0031-001	Balance of Plant	тво	RFP	S&I	Unit Rate			
CH0032-001	Hydro-Mechanical (Gates)	Andritz Hydro Canada Inc.	Active	S&I	Lump Sum			
SH0018-001	Camp Catering & Janitorial	Labrador Catering Limited Partnership	Active	Services	Unit Rate			

Labrador Transmission Assets								
Contract #	Description	Contractor	Status	Туре	Strategy			
CD0502-001	AC Substations	Alstom Grid Canada Inc.	Active	Civil	Lump Sum			
CT0319-001	AC Transmission Line	Valard Construction LP	Active	Civil	LS/UR			

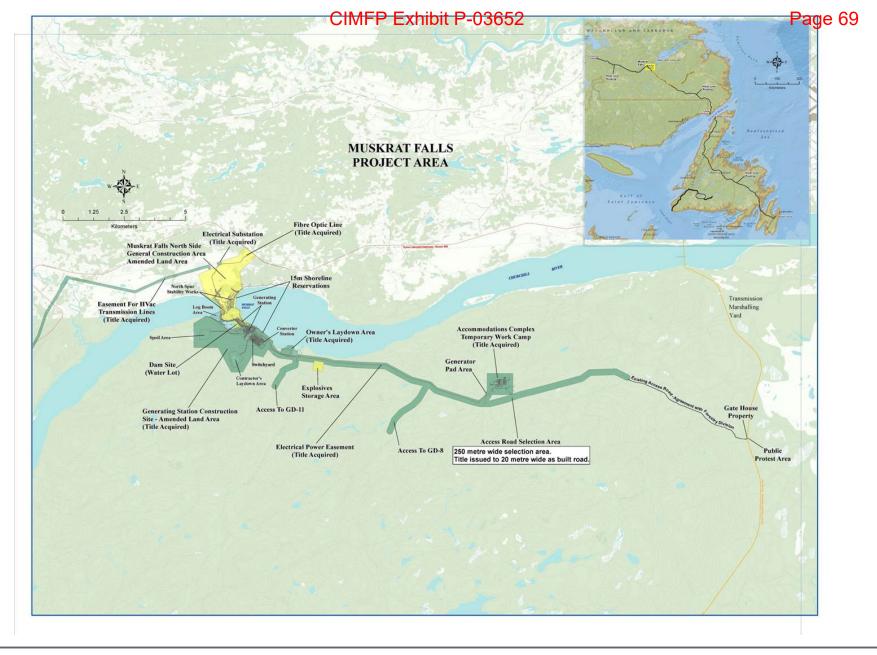
Labrador Island Transmission Link								
Contract #	Description	Contractor	Status	Туре	Strategy			
CD0501-001	Converters & Transition Compounds	Alstom Grid Canada Inc.	Active	S&I	Lump Sum			
CD0502-001	AC Substations	Alstom Grid Canada Inc.	Active	Civil	Lump Sum			
CD0508-001	Electrode Sites	H.J. O'Connell Construction Limited	Complete	Civil	LS/UR			
CD0534-001	Synchronous Condensers	Alstom Renewable Power Canada Inc.	Active	S&I	Lump Sum			
СТ0327-001	DC Transmission Line	Valard Construction LP	Active	Civil	LS/UR			
СТ0327-013	ROW Clearing (Blocks 4, 5 & 6)	Johnson's Construction Ltd.	Active	Civil	T&M			
СТ0327-015	ROW Clearing (Blocks 9 to 12)	Johnson's Construction Ltd.	Active	Civil	T&M			
PT0328-001	DC Conductor (Wire)	General Cable Company Limited	Active	PO	Unit Rate			
PT0330-001	DC Tower Steel	Jyoti Americas	Active	PO	Unit Rate			
LC-SB-002	Submarine Cable	Nexans Norway AS	Active	S&I	Lump Sum			
LC-SB-011	Rock Protection for Submarine Cable	Tideway (Luxembourg) S.A.	Active	S&I	LS/UR			

S&I = Supply and Install Agreement

LS = Lump Sum

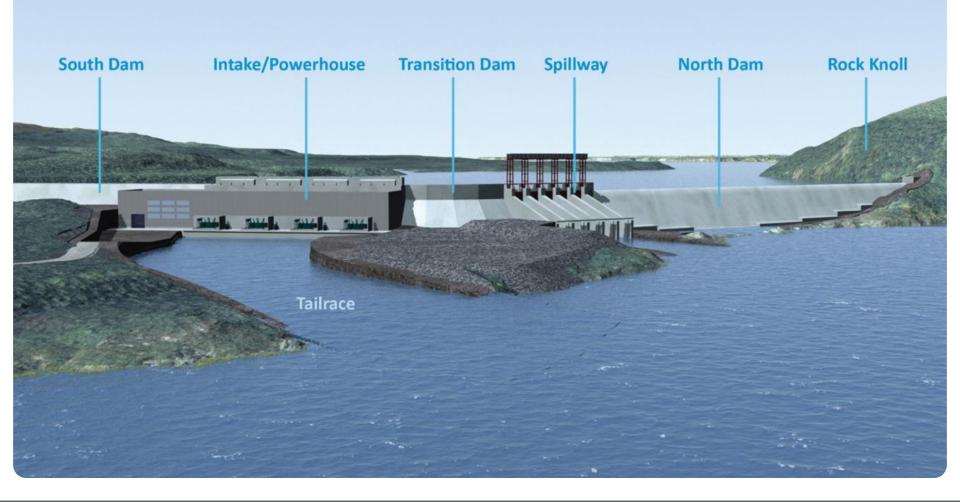
T&M = Time and Materials

Contract Interface Management


In addition to assuring the correct contracting strategy, Nalcor owners team is well resourced to manage contract interfaces to find the optimal balance between cost, execution risk and execution certainty through actions such as:

- Keeping interfaces to single points where practical
- Incorporating interface responsibility into contract language
- Ensuring appropriately sized and skilled owner team
- Using fixed price or Unit rate agreements where practical to allow appropriate passage of risk within a specific area of expertise
- Assigning resources to and implementing project wide interface management processes

2015 Progress and 2016 Look Ahead -Muskrat Falls Generation Site



Page 70

Muskrat Falls Generating Facility

LOWER CHURCHILL PROJECT

Spillway

November 2014

The spillway concrete works were at the stage when the base slabs were poured and the concrete piers were being started

November 2015

The spillway concrete works, transition dams and separation wall are complete. Astaldi have handed over to Andritz for the installation of the guides and gates

Separation Wall

November 2014

The separation wall had just been started

November 2015 The separation wall is complete

Centre Transition Dam

November 2014

The centre transition dam base slab was poured and formwork was being erected

November 2015 The centre transition dam is complete

Powerhouse and Intake

November 2014

The powerhouse and intake concrete works were just started Unit 1 and 2

November 2015

The powerhouse and intake base slabs are poured, the semi-spiral case formwork is erected and concrete works proceeding on all units

North Spur

November 2014

The North Spur stabilization contract not yet awarded and no work had started on stabilization

November 2015

The contract was awarded Q1 2015. The contractor has made good progress with the upstream cut-off wall complete and upstream slope stabilization well advanced; downstream slope stabilization is also well advanced

Page 76

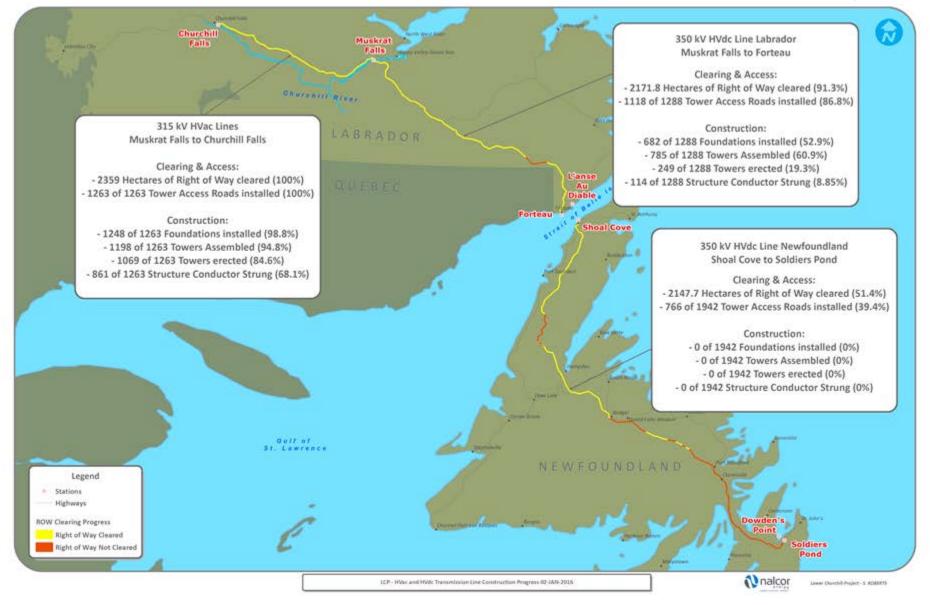
North and South Dams

November 2014 The basic design was complete. Contracts were out for bid but not awarded

November 2015

The contract for north and south dams was awarded Q3 2015, the cofferdam that will close and divert the river in 2016 has started and the cofferdam to protect the powerhouse intakes is also well advanced

2016 Look Ahead


- Key targets
 - Substantial completion of spillway gates, guides and hoists to meet river diversion mid year
 - Close upstream cofferdam and river diversion mid
 2016
 - Completion of North Spur stabilization work to allow impoundment to 25m by November
 - Impound reservoir to 25m
 - Powerhouse and intake concrete works on all units

2015 Progress and 2016 Look Ahead -Transmission

Page 79

2016 Look Ahead

- Muskrat Falls to Churchill Falls transmission
 lines complete
- Muskrat Falls to Forteau line substantially complete
- Shoal Cove to Soldiers Pond ROW cleared and access roads installed
- Shoal Cove to Soldiers Pond tower erection and line stringing over 30% complete

2015 Progress and 2016 Look Ahead - SOBI

Cables in Japan and Labrador Sites

Overview of SOBI Progress

Status as of November 2014

- Horizontal Directional Drilling -100%
- Cable type testing and manufacturing 53%
- Civil works 85%
- Land cable installation 0%
- Rock supply and Quay 47%

Status as of November 2015

- Horizontal Directional Drilling -100%
- Cable type testing and manufacturing 100%
- Civil works 95%
- Land cable installation 83%
- Rock supply and Quay 100%

2016 Look Ahead

- Transport cable to SOBI
- Install three sub sea cables
- Terminate and test installed cables
- Sub sea rock protection complete
- SOBI scope substantially complete

2015 Progress and 2016 Look Ahead -Switchyards and HVdc Facilities

Overview of Switchyards and HVdc Facilities

Status as of November 2014

- EPC contracts for switchyards, converters and synchronous condensers in progress
- Power transformer manufacturing started
- Site preparation complete at Muskrat Falls, Churchill Falls and Soldiers Pond, Forteau and Shoal Cove sites, civil works not started
- Grounding sites contract for island and Labrador not yet awarded

Status as of November 2015

- EPC contracts progressing with focus on civil design and major equipment manufacturing underway
- Power transformers received at Muskrat Falls(2) Churchill Falls (7) and Soldiers Pond (4)
- Civil works and building construction well advanced at Muskrat Falls, Churchill Falls and Soldiers Pond
- Work for grounding sites substantially complete for island and Labrador

Page 87

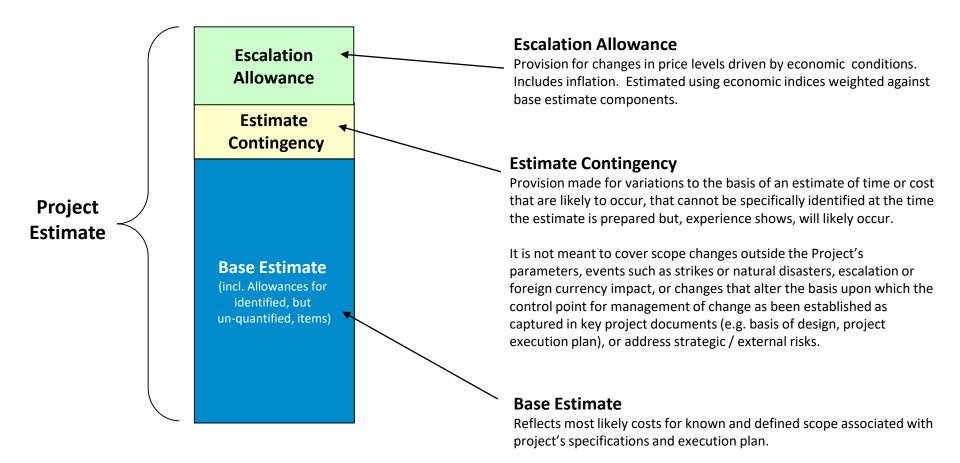
Switchyards and HVdc facilities

2014

Site preparation work was nearing completion at all sites

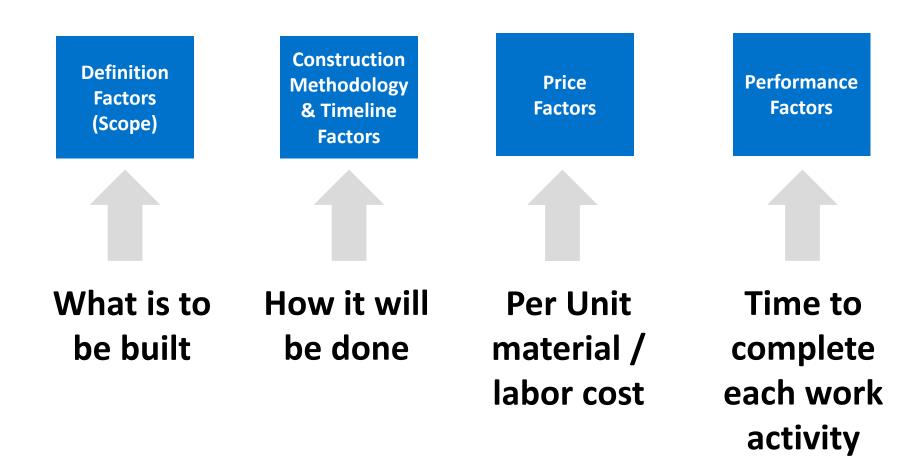
November 2015 Civil works well advanced at all sites and grounding stations substantially complete

2016 Look Ahead


- Civil works and buildings nearing completion at all sites
- Synchronous condensers delivered
- Gas insulated switchgear, converter transformers and station equipment delivered to sites
- Equipment installation underway at all sites
- Factory Acceptance Testing of protection and control systems well advanced
- Substantial completion of Soldiers Pond switchyard

DG3 Cost Estimate Process

Cost Estimate is comprised of 3 Primary Components Definitions as per AACE Recommended Practice No. 10S-90



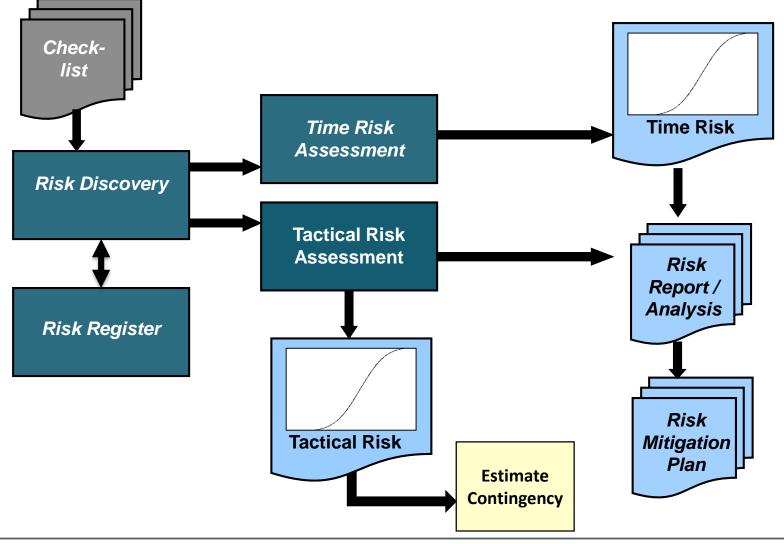
DG3 Estimate – Intended Attributes

Attribute	Key Characteristic
Intended Purpose	 (i) Verify the Decision Gate 2 estimate (ii) Provides increased level of confidence in outcome. (iii) Seek Effective Project Approval or Sanction (iv) Establishes the Project Budget
Project Definition (i.e. level of engineering	 (i) Completed design documents including drawings and outline specifications at the end of Gateway Phase 3.
design complete)	 (ii) All project execution strategies in-place for execution. (iii) Complete working drawings for early construction packages being issued for tender. (iv) Expended engineering effort from 30% to 40% of total.
Preparation Methodology	 (i) Deterministic based for both direct and indirect cost (ii) Majority of estimate prepared from measured and priced quantities obtained from the completed design drawings and outline specifications. (iii) Price and performance factors developed specifically for the Project (i.e. project labor agreement, commodity prices, productivity rates) and benchmarked against historical projects. (iv) Production rates and timeline durations aligned with detailed construction schedule. (v) A very minor proportion of the estimate may be in the form of allowances.
Level of Precision	Medium to High
Cost Flow	 (i) Aligned with Project Control Schedule (ii) Monthly cost flow available for each major commodity and for each currency and for each WBS Physical Component.

The Estimators Consider 4 Elements

CIMFP Exhibit P-03652 Page 94 Base Estimate developed using 4 Main Inputs

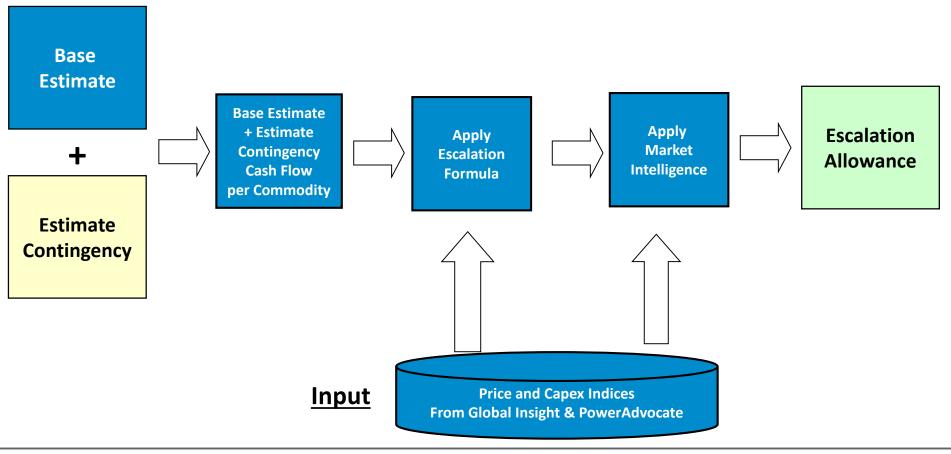
Nalcor's follows principles of AACE Recommend Practice No. 36R-08


Approach and Methodology

- Owner-led estimate team comprised of SNC-Lavalin and various 3rd parties
- Developed over a 12-month period
- Leveraged extensive historical data for Hydro and Transmission projects developed in Canada
- Reflects what a construction contractor would need to do to evaluate project costs for which a bid is being prepared
 - This approach could be best described as a bottom-up first principle estimate as opposed to a parametric or stochastic method
- Concurrently "Check" or validation estimates and Estimate Process Check completed by expert consultants

Estimate Contingency Setting

Nalcor's follows principles of AACE Recommend Practice No. 42R-08

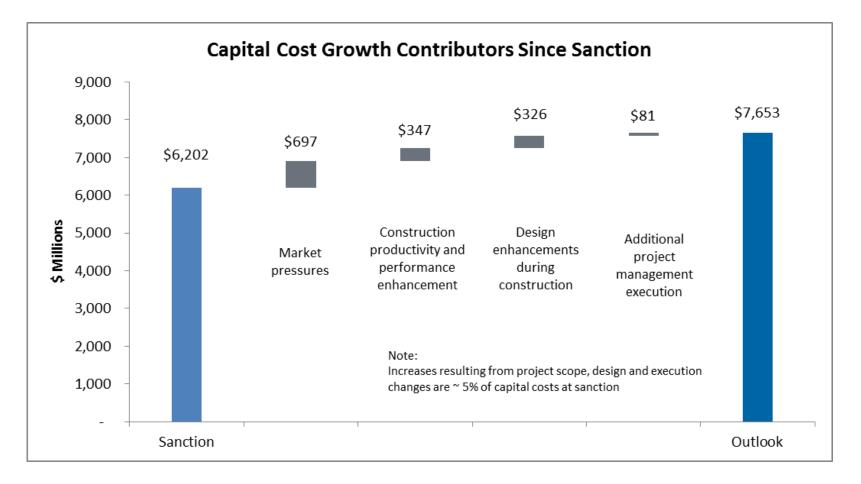

Page 96

Page 97

Escalation Estimating Process

Nalcor's follows principles of AACE Recommend Practice No. 58R-10

Inputs



Page 98

Cost Summary

Cost Growth Contributors Since Sanction

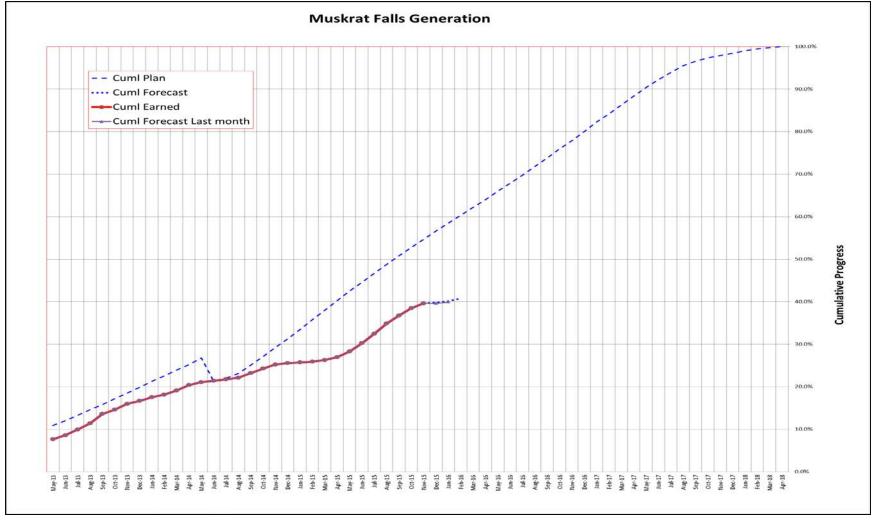
Schedule Summary

Summary Schedule-Period End Nov-15

N nalcor				_	ted Project Schedule		LCP p	roject Control - Stewardship Updated: 25-Nov-15	
energy				Layout: 21	0 IPS Summary - Ove	rall			
vity Name	delta - Last Month Start	delta - Last Month Finish	12 Q3 Q4	2013 Q1 Q2 Q3	2014 Q4 Q1 Q2 Q3 Q4	2015 Q1 Q2 Q3 Q4	2016 Q1 Q2 Q3 Q4	2017 Q1 Q2 Q3 Q4	2018 Q1
Labrador Transmission Asset (LTA)	Od	Od	42 4.				de de de de		
LTA CF Accommodations	Od	Od							
LTA CF Switchyard	Od	Od							=
LTA-735kV Interconnect at CF	Od	Dd					=		1
LTA (L3101/L3102) 315kV TL Seg1/2 MF-CF	Od	Od							
LTA (MFATS2) MF Terminal Station (Switchyard)	Od	Od							=
Labrador Island Transmission Link (LITL)	Od	Od				1			1
LCP SysComp RFO	Od	Od				[1
LITL (MFACS) MF Converter Station	Od	Od		1	=				=
LITL-Lab Electrode Line (L'Anse-au-Diable)	Od	-70d							÷
LITL Lab Grounding Station (L'Anse-au-Diable)	Od	-53d		0		· · · · · · · · · · · · · · · · · · ·			1
LITL-Lab HVdc Seg1/2	Od	-53d							
LITL Lab Transition Compound	Od	-53d		1	=	• • •			1
LITL SOBI Crossing	Od	-53d		1					1
LITL Nfld Transition Compound	Od	-53d			=	· · · · · · · · · · · · · · · · · · ·		;	1
LITL-Nfld HVdc TL Seg 3/4/5	Od	-53d		¢					÷
LITL (SOPCS) SOP Converter Station	Od	Od		¢					=
LITL-Nfld Electrode Line (Dowden's Point)	Od	-48d		f				•	
LITL Nfld Grounding Station (Dowden's Point)	Od	-53d							+
LITL (SOPTS) Soldiers Pond Terminal Station (Swit		Od		£					=
LITL-Nfld SOP ac Line Rebuilds	Od	Od							†
LITL (SOPSC) SOP Synchronous Condenser	Od	Od							
Muskrat Falls - Generation (MFGen)	Od	Od							
MFGen Access Road	Od	Od							
MFGen Construction Power	Od	Od				<u>.</u>			*****
MFGen Accommodations	Od	Od							÷
MFGen Reservoir Preparation	Od	Od				ė			÷
MFGen North Spur Stabilization	Od	Od							+
MFGen Spillway/Diverson	Od	Od							+
MF Bulk Excavation	Od	Od		÷			=		
Spillway/Div Ph 1				÷					
Spillway Ph2-Bay 1	Od Od	Od Od		÷				<u></u>	÷
Spillway Ph2-Bay 3									+
Spillway Ph2-Bay 5	b0	0d							+
Spillway Ph2-Bay 5 Spillway Ph2-Bay 2	Od	0d						·	<u></u>
Spillway Ph2-Bay 2 Spillway Ph2-Bay 4	0d	0d		2					
MFGen Power House & Intake	0d	0d							
MFGen North RCC Dam	Od	0d							
MFGen-315kV Collector Line (PH->MF Swyd)	0d	0d							÷
MFGen South Dam	Od	0d							
MFGen Site Restoration	0d	0d							
	Od	0d							÷
MFGen Offsite Logistics and Infrastucture Upgrad	Od	Od		1		1		1	1
Current Construction Last	Month Com	missioning			Page 1 of 1	Layout: 210 IPS	Summary - Overal		
Current Commissioning							an Manthia Banant, Ouar-"		
Last Month Construction						Puter: TASK fil	er: Monthly Report -Overall .		

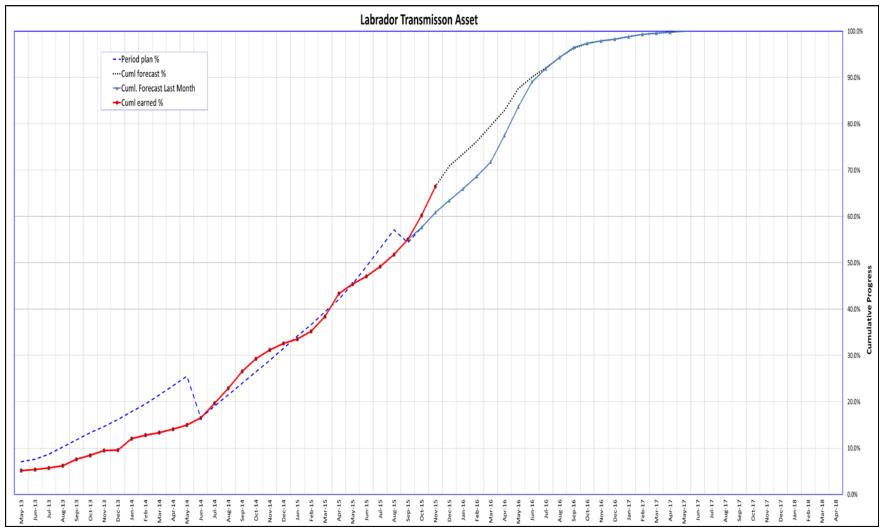
Summary of Progress-Period End Nov-15

		LCP - (Overall	2015	Nov				
			Th	is Report	ting Period				Next Month
	Weight		Pe	riod %		C	umulative 9	6 * 2	Forecast %
	Factor %	Plan *1	Forecast	Earned	Var-Forecast	Plan	Earned	Variance	Period %
	А	В	B1	с	C-B1	E	F	F-E	G
Labrador Transmission Asset (LTA)	11.1%	3.2%	3.2%	6.2%	3.0%	60.9%	66.5%	5.6%	4.4%
Labrador Island Transmission Link (LITL)	42.2%	3.4%	3.4%	1.7%	-1.7%	35.2%	32.5%	-2.7%	3.0%
Muskrat Falls Generation (MFGen)	46.7%	1.9%	1.9%	1.1%	-0.8%	54.7%	39.6%	-15.1%	0.2%
LCP-Overall	100.0%	2.7%	2.7%	1.9%	-0.8%	47.2%	39.6%	-7.6%	1.8%
			La	st Report	ting Period				
	Weight		Per	riod %			Cumulative	%	
	Factor %	Plan		Earned		Plan	Earned		
	А	В		С		E	F		
Labrador Transmission Asset (LTA)	11.1%	3.3%		5.2%		57.6%	60.3%		
Labrador Island Transmission Link (LITL)	42.2%	2.8%		2.0%		31.9%	30.8%		
Muskrat Falls Generation (MFGen)	46.7%	2.0%		1.8%		52.7%	38.5%		
LCP-Overall	100.0%	2.5%		2.2%		44.5%	37.7%		


*1 Plan represents Sep 2015 rebaseline for LTA/LITL and partial MFG. Remaining MFG uses June 2014 baseline

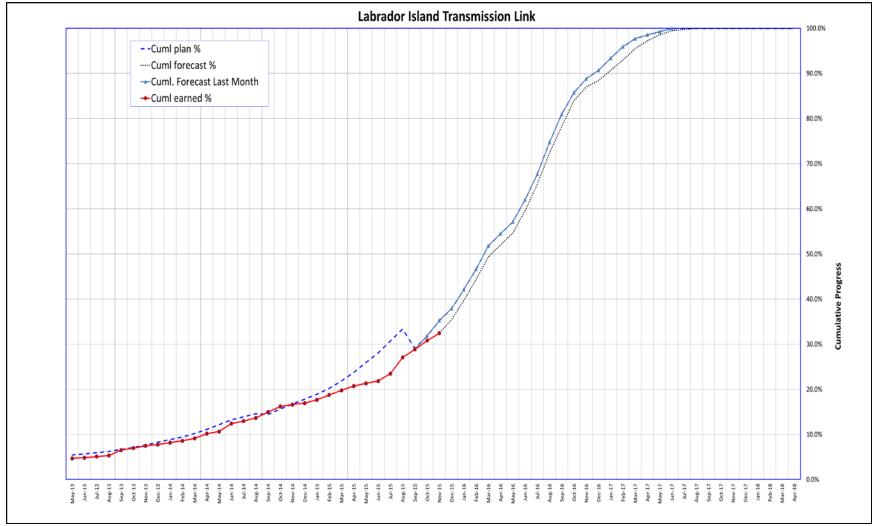
*2 MFG cumulative planned progress uses June 2014 baseline until MFG update available

Page 103


Muskrat Falls Generation-Progress Curve Period End Nov-15

Page 104

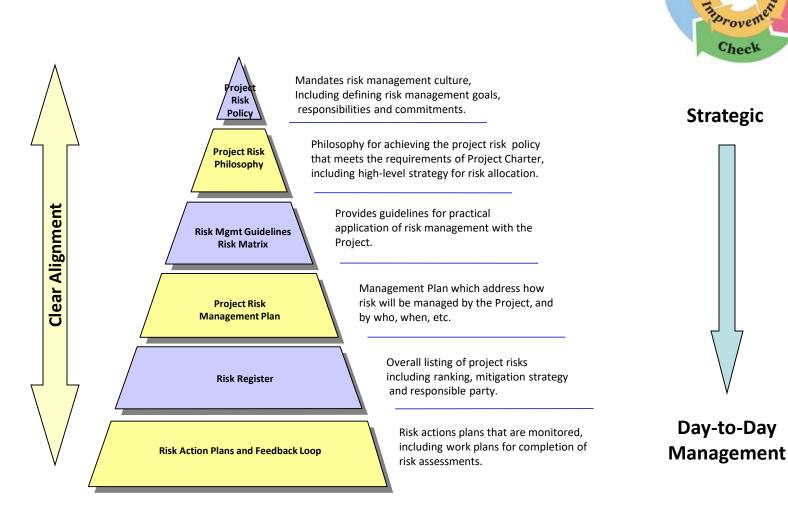
Labrador Transmission Asset-Progress Curve Period End Nov-15



CIMFP Exhibit P-03652

Page 105

Labrador Island Transmission Link-Progress Curve Period End Nov-15



Risk Management

Risk Management Framework

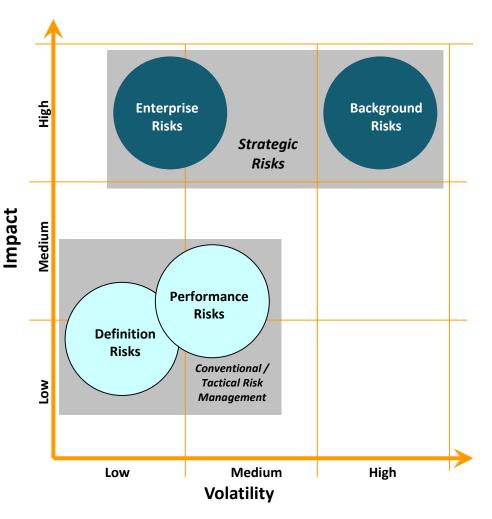
Page 107 Plan

continuou,

Check

Act

LCP's Risk Philosophy


- Built upon framework of early identification, assessment and mitigation planning
- Many risks are multi-dimensional and complex requiring creative solutions
- Cost effectively managing risks will require risks to be allocated to various stakeholders who are best positioned to manage them through Risk Brokering
- This process of Risk Allocating will be featured significantly through the procurement process for the project's supply and construction contracts

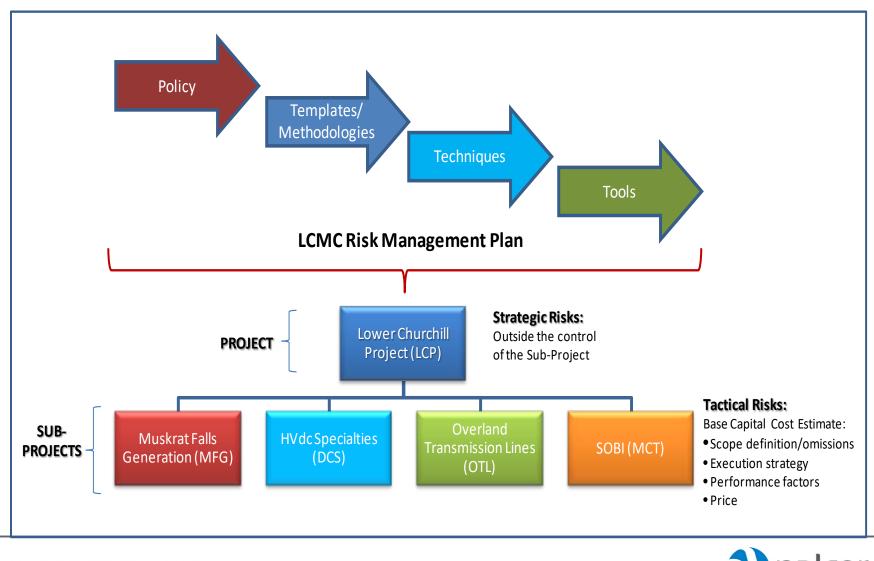
LCP's Risk Philosophy (cont'd)

- A few risks (8 to 10) will shape the Project
 - Referred to as Key Risks
 - Some can be considered
 "strategic" or background
 / external risks and
 outside direct influence of
 Project Team

Project Risk Management Plan

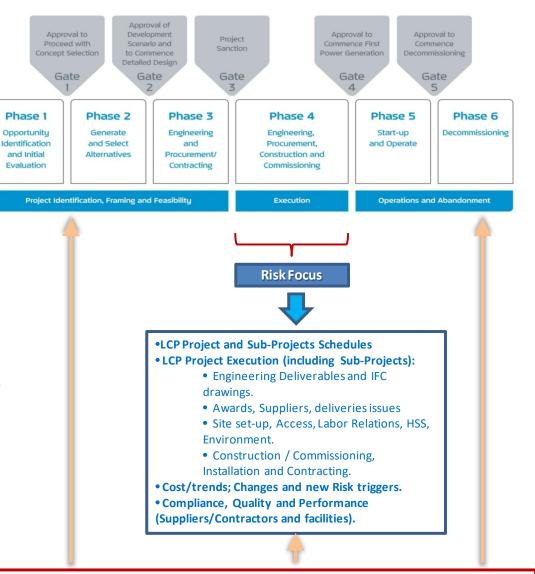
			LOWER		у т	
		PROJEC	CT RISK MA	NAGEMENT	PLAN	
	N	lalcor Doc. N	No. LCP-PT-	MD-0000-RI	-PL-0001-01	
Comm	ents:				Tota	# of Pages:
		update throughources for the curre				uding Cover): 59
						uding Cover):
						uding Cover):
						uding Cover):
proces	s, tool and reso	urces for the curre	ent phase of LCP	Qu Parah		uding Cover): 59
B2	23-0c1-2014	Issued for Use	ent phase of LCP	OLI PHIM E. Bush	Management	uding Cover): 59

- Risk Management Plan defined "LCP's Approach" established early
- Extensive risk management efforts expended prior to Sanction/DG3, which facilitated characterization of the Project's risk spectrum and shape delivery strategies
- Framework contained in this Plan continues to be used for ongoing risk management


The Risk Management Cycle Continues

- Project Risk
 Management Plan
 is centered around
 the Risk
 Management
 Cycle
 - On-going Plan-Do-Check-Act

Risk Management Process



LOWER CHURCHILL PROJECT

Page 113

Current Focus

- Risk Management Cycle aligned with Gateway Model and supports the Project Controls Cycle
- Focus today is Risk Monitoring and Control
- With consideration of current risk profile of the Project a decision has been taken quantified the residual risk post mitigation in order to provide a risk-adjusted cost forecast

Interfaces with other Stakeholders, Readiness for Operation, Operation Plan Register, Etc.

Remaining Key Project Risks

- Contractor failure/abandonment- Nalcor check the financial stability of our contractors prior to award and monitor any contractors that are considered to have increased financial risk. Contractor failure/abandonment can result in significant cost and schedule impacts despite contract securities being in place
- Contractor Performance including production and productivity Nalcor have the oversight of the contractors performance and are intervening where required, this can result in greater Owner costs but is essential to ensure best project outcome
- Completion, Commissioning and Startup Nalcor is pro-active in establishing the organization, processes and procedures required and has established specific teams to manage the contractors and ensure readiness for commissioning and Startup – however this will be a challenging task

Remaining Key Project Risks continued

- Time and Material contracts there is a risk with these type of contracts that costs can increase as site conditions actually experienced can be more challenging than estimated and take more time than planned for
- Geotechnical risk is much reduced however still remains on the HVdc line and dam construction

Sharing our ideas in an open and supportive manner to achieve excellence.

Teamwork Open Communication Fostering an environment where information

moves freely in a timely manner.

Honesty and Trust

Being sincere in everything we say and do.

Relentless commitment to protecting ourselves, our colleagues, and our community.

Respect and Dignity

Appreciating the individuality of others by our words and actions.

Leadership

Empowering individuals to help, guide and inspire others.

Holding ourselves responsible for our actions and performance.

Accountability

