

# 

B.

# Goose Bay/Lake Melville Model for Methylmercury in Water

Presentation to Government of Newfoundland and Labrador Alex Brunton (Baird & Associates) Reed Harris (RHE Ltd)

June 28, 2018







# Approach

B.

- A high-resolution 3-D model was used to simulate hydrodynamics in Goose Bay and Lake Melville
- The model was calibrated to temperature, salinity, and velocity measurements made by Memorial University.
- The model was also used to simulate downstream transport of methylmercury from the reservoir flood zone, examining the effects of mixing and dilution (but not removal processes).
- Two estimates of methylmercury loads from the reservoir were used in simulations (based on FLUDEX experiment and ResMerc model). Used the average of the results.
- A 'box model' extended the results from the 3-D model to include photodegradation and settling of MeHg.

Page 4

# **3-D Model**

- Used Delft3D model:
  - Industry-standard for hydrodynamics in estuarine systems

## • Includes effects of:

- Tides
- Salinity (sea water and fresh water)
- Freshwater inflows
- Local weather conditions (temperature and wind)
- 300,000 individual grid cells (20,000 horizontally x15 layers vertically)



#### CIMFP Exhibit P-04232

# **Model Grid**

B.



#### CIMFP Exhibit P-04232

# Model captured vertical mixing



B.

# **Box Model**

- Set up to account for losses of MeHg from:
  - Photodegradation



Settling of solid-bound MeHg





CIMFP Exhibit P-04232

## Three zones in box model





Page 8

#### CIMFP Exhibit P-04232 **Box Model**



Ť

# **Comparison of Box Model and High Resolution Model**



## Box model example results including photodegradation + settling



B.

19

ResMerc Loads; Average Photodegradation Rates; 0.5 m/d

## **Predicted increases in MeHg concentrations in water**

#### Surface waters (0-20 m)

| Location              | MeHg Concentration Increase:<br>3 Year average (ng/L, max) |
|-----------------------|------------------------------------------------------------|
| Goose Bay             | 0.019                                                      |
| Melville West         | 0.006                                                      |
| Melville East         | 0.005                                                      |
| Deeper waters (>20 m) |                                                            |

| Location      | MeHg Concentration Increase<br>3 Year average (ng/L, max) |
|---------------|-----------------------------------------------------------|
| Goose Bay     | 0.013                                                     |
| Melville West | 0.002                                                     |
| Melville East | 0.003                                                     |

Results for average of resmerc/fludex

#### Page 13

## **Predicted relative increases in MeHg concentrations in water**

#### Surface waters (0-20 m)

| Location      | Peak/Baseline |
|---------------|---------------|
| Goose Bay     | 2.1           |
| Melville West | 1.4           |
| Melville East | 1.3           |

Deeper waters (>20 m)

| Location      | Peak/Baseline |
|---------------|---------------|
| Goose Bay     | 1.9           |
| Melville West | 1.3           |
| Melville East | 1.4           |

Baseline concentrations: 0-20m: 0.017 ng/L. >20m: 0.015 ng/L (Goose Bay), 0.007 ng/L (Lake Melville) Results for average of resmerc/fludex

# Summary

- Applied a combination of high resolution and aggregated box models to predict the downstream fate of methylmercury supplied from the reservoir flood zone.
- Methylmercury in Lake Melville waters predicted to increase by ~30-40% (max) in upper 20m (based on 3 yr average).
- Predicted increases in water are lower than predicted by Calder et al. (2016).
- Difference is mainly due to lower predicted loads from the reservoir.
- This analysis does not include effects of Lake Melville biomass.



Page 14